Ultra-peripheral Collisions at STAR
Janet Seger (for the STAR Collaboration)
Creighton University
Ultra-peripheral Collisions

- Large impact parameter \((b > R_1 + R_2) \rightarrow\) no nuclear overlap \(\rightarrow\) no “collision” \(\rightarrow\) electromagnetic interactions dominate

- Relativistic heavy ions are intense source of quasi-real photons
 - \(Q \sim 1/R \sim 0.06\) GeV (Au) or 0.28 GeV (p)
 - Photon flux \(~ Z^2\) from each nucleus
 - Experimentally: very low multiplicity events with small momentum transfer, rapidity gaps

- Photoproduction in \(\gamma p\) and \(\gamma A\) interactions
- QED processes in \(\gamma\gamma\) interactions

\[b > R_1 + R_2\]
Photoproduction of vector mesons

- Has been extensively studied at HERA, RHIC, LHC
- Factorize into
 - photon emission
 - interactions with nuclear target
- Allows one to probe the nucleus via QCD to learn about shadowing, saturation effects, nPDFs
Photoproduction of vector mesons

• Has been extensively studied at HERA, RHIC, LHC

• Factorize into
 • photon emission
 • interactions with nuclear target

• Allows one to probe the nucleus via QCD to learn about shadowing, saturation effects, nPDFs

• Coherent interaction: Photon interacts with entire nucleus
 • Nucleus generally remains intact
 • Small momentum transfer: $p_T \sim \hbar/R_A \sim 15$ MeV
 • Max photon energy $\sim \gamma \hbar/R_A \sim 3$ GeV at RHIC
Photoproduction of vector mesons

• Has been extensively studied at HERA, RHIC, LHC

• Factorize into
 • photon emission
 • interactions with nuclear target

• Allows one to probe the nucleus via QCD to learn about shadowing, saturation effects, nPDFs

• Coherent interaction: Photon interacts with entire nucleus
 • Nucleus generally remains intact
 • Small momentum transfer: \(p_T \sim \hbar/R_A \sim 15 \text{ MeV} \)
 • Max photon energy \(\sim \gamma \hbar/R_A \sim 3 \text{ GeV} \) at RHIC

• Incoherent interaction: Photon can interact with individual nucleons
 • Nucleus generally breaks
 • Momentum transfer is bigger: \(p_T \sim \hbar/R_A \sim 100 \text{ MeV} \)
 • Max photon energy \(\sim \gamma \hbar/R_A \sim 20 \text{ GeV} \) at RHIC

Heavy Vector Mesons: J/ψ

\[
\frac{d\sigma}{dt}^{\gamma^* A \rightarrow J/\psi A} \propto (x G_A(x, Q^2))^2
\]

- 2-gluon exchange at the lowest order
- Probe of gluon distribution function
- For vector mesons:

\[
x \sim \frac{m_{J/\psi} e^{-y}}{\sqrt{s}} \quad Q^2 = \frac{M_{J/\psi}^2}{4}
\]

- Measurements at different rapidities sample different values of x
The STAR detector

• Central tracking and particle identification, forward counters and neutron detection
• Time Projection Chamber: tracking and identification in $|\eta| < 1$
• Time-Of-Flight: multiplicity trigger, identification and pile-up track removal
• Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
• Beam-Beam Counters: scintillator counters in $2.1 < |\eta| < 5.2$, forward veto
• Zero Degree Calorimeters: detection of very forward neutrons, $|\eta| > 6.6$
UPC trigger at STAR

Trigger requires:

• Back-to-back hits in BEMC
• Limited activity in TOF
• Veto from both BBCs
• Signal in both ZDCs (xnxn)
 • Energy deposition within 1/4 to 4 beam-energy neutrons
 • Full efficiency for single neutrons
J/ψ candidates observed in e⁺e⁻ decay channel

200 GeV Au+Au data from 2014 run at STAR

Selection criteria:
• Vertex with exactly two tracks of opposite sign
• |y| < 1
• $p_T < 0.17$ GeV/c

Like-sign background is minimal
Non-negligible background from e⁺e⁻ continuum is parametrized with empirical formula

$$f_{\gamma\gamma \rightarrow e^+e^-} = (m - c_1)e^{\lambda(m-c_1)^2} + c_2m^3$$

• Effective convolution of $\gamma\gamma \rightarrow e^+e^-$ cross section and detector effects
Transverse momentum of J/ψ candidates

• Select candidates within J/ψ mass peak
• Distribution is mostly well reproduced by the template from STARLIGHT for different contributions
 • e^+e^- normalized using mass fit
 • Discrepancy in region $0.2 \text{ GeV/c} < p_T < 0.4 \text{ GeV/c}$
Separate incoherent from coherent

• Plot as a function of $\log_{10}(p_T^2)$

• Parametrize the incoherent contribution at high p_T (well above coherent peak)

$$f_{incoherent} = A \cdot e^{-bp_T^2}$$

• Extrapolate to lower p_T and subtract to get coherent sample
Diffractive dip seen in coherent $d^2\sigma/dtdy$

- After background subtraction
- $t \approx -p_T^2$

Model comparisons:
- **STARLIGHT**: Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance
 - Glauber approach
 - Includes photon p_T
 - Dipole approach with IPsat amplitude
 - Scaled to XnXn using STARLIGHT
 - Hot spot model for nucleons, dipole approach
 - Scaled to XnXn using STARLIGHT
Diffractive dip seen in coherent $d^2\sigma/dt dy$

- After background subtraction
- $t \approx - p_T^2$

Model comparisons:

- **STARLIGHT**: Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance
 - Glauber approach
 - Includes photon p_T

 - Dipole approach with IPsat amplitude
 - Scaled to $XnXn$ using STARLIGHT

 - Hot spot model for nucleons, dipole approach
 - Scaled to $XnXn$ using STARLIGHT

Slope below first diffractive minimum is consistent with the Glauber approach in **STARLIGHT**
Diffractive dip seen in coherent $d\sigma/dt$

- After background subtraction
- $t \approx -p_T^2$

Model comparisons:
- **STARLIGHT**: Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance
 - Glauber approach
 - Includes photon p_T
 - Dipole approach with IPsat amplitude
 - Scaled to $XnXn$ using STARLIGHT
 - Hot spot model for nucleons, dipole approach
 - Scaled to $XnXn$ using STARLIGHT

Slope below first diffractive minimum is consistent with the Glauber approach in **STARLIGHT**

Diffractive dip around $|t| \approx 0.02$ GeV2 is correctly predicted by the dipole **MS** and **CCK** models.
Coherent ρ photoproduction

- High statistics 200 GeV Au+Au dataset
- Like-sign background has been subtracted
- Incoherent fit to dipole form factor at high t, extrapolated to lower t and subtracted to reveal coherent signal
- Diffractive dips evident
- Fourier-Bessel transform of $d\sigma/dt$ gives nuclear density profile

\[Au + Au \rightarrow \rho + Au + Au + XnXn, \quad \sqrt{s_{NN}}=200 \text{ GeV} \]

\[F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_Tp_TJ_0(bp_T)\sqrt{\frac{d\sigma}{dt}} \]

Shadowing changes effective shape of nucleus

- Photon fluctuates to $q\bar{q}$ dipole, scatters off nucleus to emerge as ρ
- Smaller mass \rightarrow larger dipole \rightarrow interacts on the front of the nucleus
 - “black disk”
- Higher mass \rightarrow smaller dipole \rightarrow penetrates further, sees internal nucleons
 - Woods-Saxon distribution

\[
\sigma_c = \int d^3 \vec{k} |\Sigma_i A_i \exp(ik \cdot \vec{x}_i)|^2
\]

- Do we see a difference in shape for different dipole size (mass)?
Data selection and mass binning

- Exactly 2 tracks from a common vertex
- $|Z_{vtx}| < 50$ cm
- $|y_{\pi\pi}| > 0.04$ (removes cosmic rays)
- Each track has > 25 space points
- $0.62 \text{ GeV/c}^2 < M_{\pi\pi} < 0.95 \text{ GeV/c}^2$
- Divide into three mass bins of ~ equal statistic

$Au + Au \rightarrow \rho + Au + Au + XnXn$, $\sqrt{s_{NN}}=200$ GeV

PoS(DIS2018)047
Subtract like-sign and incoherent backgrounds

Red: like-sign background
Blue: opposite sign pairs
Subtract like-sign and incoherent backgrounds

Red: like-sign background
Blue: opposite sign pairs

After subtraction of like-sign background
Fit with dipole form factor

\[\frac{dN}{dt} = \frac{A/Q_0^2}{(1+t/Q_0^2)^2} \]

PoS(DIS2018)047
$d\sigma/dt$ for Coherent ρ mesons

- After subtraction of incoherent contribution
- Normalized to same number of events/$M_{\pi\pi}$ bin
- Depth of diffractive dip varies with mass

$Au + Au \rightarrow \rho + Au + Au + XnXn$, $\sqrt{s_{NN}}=200$ GeV

STAR Preliminary

Low Mass
Medium Mass
High Mass
Transform to $F(b)$

$$F(b) \propto \frac{1}{2\pi} \int_0^{\sqrt{t_{\text{max}}}} d\sqrt{t_{\text{max}}} p_T p_T J_0(b p_T) \sqrt{\frac{d\sigma_c}{dt}}$$

- Use $t_{\text{max}} = 0.006$ GeV2 for baseline
 - Below first dip
 - Vary as systematic

- Effects of shadowing would be to broaden the distribution
 - In the black disk limit, $F(b)$ would be constant
 - Expect lower-mass to be broader, flatter
Transform to $F(b)$

$$F(b) \propto \frac{1}{2\pi} \int_{0}^{\sqrt{t_{\text{max}}}} d p_T \, p_T J_0(b \, p_T) \sqrt{\frac{d\sigma_c}{dt}}$$

- Use $t_{\text{max}} = 0.006 \text{ GeV}^2$ for baseline
 - Below first dip
 - Vary as systematic

- Effects of shadowing would be to broaden the distribution
 - In the black disk limit, $F(b)$ would be constant
 - Expect lower-mass to be broader, flatter

$Au + Au \rightarrow \rho + Au + Au + XnXn, \sqrt{s_{NN}}=200 \text{ GeV}$

Preliminary
Windowing effect from choosing t_{max}

$$F(b) \propto \frac{1}{2\pi} \int_0^{t_{\text{max}}} dp_T p_T J_0(b p_T) \sqrt{\frac{d\sigma_c}{dt}}$$

- Choice of t_{max} affects the shape, particularly at $b = 0$ fm
- Does not change the general trend that lower-mass \rightarrow wider distribution
STARLIGHT, for comparison

- No shadowing effects included

STARLIGHT variation with $M_{\pi\pi}$

Low mass
Medium mass
High mass

STARLIGHT

$F(b)$

1.1*Low Mass
1.05*Medium Mass
High Mass

p_T^2 (GeV2)

b (fm)
Conclusions

• STAR has a high statistics sample of coherently produced \(\rho \) mesons
 • Allows clear observation of diffractive dips
 • Shape of \(d\sigma/dt \) sensitive to distribution of interaction sites
 • \(M_{\pi\pi} \) serves as a proxy for dipole size
 • Pilot study shows shape difference with mass (dipole size)
 • Systematic effects due to choice of \(t_{\text{max}} \)

• Diffractive structure also seen in lower-statistics sample of coherently produced \(J/\psi \)
 • Location of diffractive dip in \(d\sigma/dt \) consistent with dipole models
 • Slope of \(d\sigma/dt \) at low \(t \) reproduced by Glauber model