Overview of Open Heavy Flavor Results at RHIC and LHC

Xin Dong
Lawrence Berkeley National Laboratory
Quantitative Measure of QGP

What is the microscopic picture of “perfect fluid”?
Uniqueness of Heavy Flavor Quarks

$\begin{align*}
 m_u \quad m_d \\
 1 \quad 10 \\
 m_s \quad \Lambda_{QCD} \\
 10^2 \quad 10^3 \\
 m_c \quad m_b \\
 10^4 \quad MeV
\end{align*}$

$T_c \quad T_{QGP}$

$m_{c,b} >> \Lambda_{QCD}$ amenable to perturbative QCD

$m_{c,b} >> T_{QGP}$ predominately created from initial hard scatterings

“Brownian” motion

$D_s(2\pi T) \sim \eta/s$

ratio depends on the strong/weak coupling nature of QGP

R. Rapp and H. van Hees, 0903.1096

$\hat{q} = \frac{\Delta p_T^2}{\lambda} = \frac{4D_p E_p}{p}$

gauge to disentangle collisional vs. radiative energy loss

Heavy quark transport – to probe QGP with comprehensive p_T coverage
- unique insights to both perturbative and non-perturbative regimes
Key Instruments - Pixel Detector

<table>
<thead>
<tr>
<th></th>
<th>ALICE</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
<th>PHENIX</th>
<th>STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor tech.</td>
<td>Hybrid</td>
<td>Hybrid</td>
<td>Hybrid</td>
<td>Hybrid</td>
<td>Hybrid</td>
<td>MAPS</td>
</tr>
<tr>
<td>Pitch size ((\mu m^2))</td>
<td>50x425</td>
<td>50x400</td>
<td>100x150</td>
<td>200x200</td>
<td>50x425</td>
<td>20x20</td>
</tr>
<tr>
<td>Radius of first layer (cm)</td>
<td>3.9</td>
<td>5.1</td>
<td>4.4</td>
<td>N/A</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Thickness of first layer</td>
<td>1%(X_0)</td>
<td>(~1%X_0)</td>
<td>(~1%X_0)</td>
<td>(~1%X_0)</td>
<td>1%(X_0)</td>
<td>0.4%(X_0)</td>
</tr>
</tbody>
</table>

STAR Pixel – first application of **MAPS** technology in collider experiments

MAPS - *Monolithic Active Pixel Sensor*

Next generation **MAPS** planned for future experiments:

- ALICE ITS upgrade, sPHENIX MVTX
 - to address the QGP medium properties
- Also for CBM, EIC detector R&D
Exclusive reconstruction of HF hadrons in heavy-ion collisions

\[D^0 \rightarrow K\pi \]
\[D_s \rightarrow \phi\pi \]

\[\Lambda_c \rightarrow pK\pi \]
\[B^+ \rightarrow J/\psi K \]

σ_{XY} (μm)

- **STAR**: 30 μm @ 1 GeV/c (p)
- **ALICE**: 70 μm @ 1 GeV/c (p_{T})
- **ATLAS/CMS**: 100 μm @ 1 GeV/c (p_{T})

Total Momentum p (GeV/c)

Invariant mass

\[M_{KK'^{\pm}} (GeV/c^2) \]

\[M_{pK} (GeV/c^2) \]

Au+Au @ 200 GeV, 0-80%

1. \[\frac{dN}{dM} \] vs. \[M_{KK'^{\pm}} \] for 2.5 < p_{T} < 8.0 GeV/c
2. \[\frac{dN}{dM} \] vs. \[M_{KK'^{\pm}} \] for 1 < p_{T} < 8 GeV/c

STAR Preliminary

CMS Preliminary

\[B^+ \rightarrow J/\psi K \]

Significance: 10.8
D⁰ Meson R_{AA} in Central A+A Collisions

RHIC

Au+Au $\sqrt{s_{NN}} = 200$ GeV

R_{AA} vs p_T (GeV/c)

- D⁰ 0-10%
- π^\pm 0-12% STAR

LHC

27.4 pb⁻¹ (5.02 TeV pp) + 530 μb⁻¹ (5.02 TeV PbPb)

CMS

CMS, PLB 782 (2018) 474

- $R_{AA}(D) \sim R_{AA}(h)$ at $p_T > \sim 4$ GeV/c
 - significant charm quark energy loss in the QGP medium
 - importance of radiative and collisional energy loss

STAR, PRC 99 (2019) 034908
D⁰ Total Cross Section and Radial Flow

- **D⁰ p_T-integrated X-sec. suppressed in central Au+Au collisions at RHIC**
- **Blast-Wave thermal model fit => D⁰ mesons kinetically freeze out earlier than light flavor hadrons**

STAR, PRC 99 (2019) 034908

Graph

- **Au+Au √s_{NN} = 200 GeV**
 - **p+p**
 - **• 2014**
 - **○ 2010/11**

Graph Details

- **p_T > 0 GeV/c**
- **p_T > 4 GeV/c**

Axes

- **N_{part}**
- **dσ^{NN}/dy**
- **T_{kin}**
- **⟨β⟩**

Legend

- **D⁰**
- **φ, Ξ^-**
- **π, K, p**

Data Points

- **60-80%**
- **0-10%**
- **70-80%**
- **0-5%**
Strange-Charm Meson Enhancement

STAR, QM17; ALICE, JHEP 1810 (2018) 174; CMS-PAS-HIN-17-008

• Enhancement in D_s/D^0 ratio in A+A w.r.t to PYTHIA/pp baseline
 - Coalescence hadronization
 - Strangeness enhancement
Reconstruction in Heavy-Ion Collisions

\[\Lambda_c \rightarrow pK^+\pi^+ \]

\[\Lambda_c^+ \rightarrow pK_S^0 \rightarrow p\pi^+\pi^- \]

Great experimental achievement in reconstructing charm baryon in heavy-ion collisions!
Charm Baryon Enhancement

- Significant enhancement in Λ_c / D^0 ratio in A+A collisions w.r.t PYTHIA/p+p baselines
 - Coalescence hadronization

STAR, QM18; ALICE, arXiv:1809.10922
Total Charm Production Cross Section

<table>
<thead>
<tr>
<th>Charm Hadron</th>
<th>Cross Section $d\sigma/dy$ (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$41 \pm 1 \pm 5$</td>
</tr>
<tr>
<td>D^+</td>
<td>$18 \pm 1 \pm 3$</td>
</tr>
<tr>
<td>D^+_s</td>
<td>$15 \pm 1 \pm 5$</td>
</tr>
<tr>
<td>Λ^+_c</td>
<td>$78 \pm 13 \pm 28^*$</td>
</tr>
<tr>
<td>Total</td>
<td>$152 \pm 13 \pm 29$</td>
</tr>
<tr>
<td>Total</td>
<td>$130 \pm 30 \pm 26$</td>
</tr>
</tbody>
</table>

- Total charm cross section follows $\sim N_{\text{bin}}$ scaling from $p+p$ to $Au+Au$
- However, charm hadro-chemistry changes considerably!
Charm Hadron v_2 at RHIC

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D)$ follows the same (m_T-m_0) scaling as light hadrons below 1 GeV/c2
- Transport models including c diffusion in medium consistent with data

STAR, PRL 118 (2017) 212301; QM18
Charm Hadron v_2 at LHC

- Significant D-meson v_2 at 5.02 TeV Pb+Pb collisions
- $D^0 v_2$ follows the same trend as light hadrons at LHC
Charm Hadron v_2 and R_{AA}

PbPb 5.02 TeV, Cent. 30-50%
- ALICE D^0, D^0, D^+ lyl < 0.8
- CMS D^+ lyl < 1

AuAu 200 GeV, Cent. 10-40%
- STAR D^+ lyl < 1

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>v_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

$27.4 \text{ pb}^{-1} (5.02 \text{ TeV pp}) + 530 \mu\text{b}^{-1} (5.02 \text{ TeV PbPb})$

$D^0 + \bar{D}^0$
- CMS lyl < 1
- ALICE lyl < 0.5
- STAR 2014

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>R_{AA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
</tbody>
</table>

5.02 TeV PbPb, Centrality 30-50%
- LBT
- PHSD
- SUBATECH
- TAMU

Average D^0, D^+, D^{*}, lyl < 0.8
- BAMPs el.+rad.
- POWLANG HTL
- LBT

5.02 TeV PbPb, Centrality 0-10%
- Dijndjevic et al.
- Vitev et al. (g=1.9-2.0)
- PHSD w/ shadowing
- PHSD w/o shadowing

Average D^0, D^+, D^{*}, lyl < 0.5
- BAMPs el.+rad.
- POWLANG HTL
- LBT

5.02 TeV PbPb, Centrality 0-10%
- Djordjevic et al.
- Vitev et al. (g=1.9-2.0)
- PHSD w/ shadowing
- PHSD w/o shadowing

Average D^0, D^+, D^{*}, lyl < 0.5
- BAMPs el.+rad.
- POWLANG HTL
- LBT

R_{AA}
- CMS lyl < 1
- ALICE lyl < 0.5
- STAR 2014

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>R_{AA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Current Knowledge of HQ Diffusion Coefficient

\[2\pi T D_s \sim 2-5 \text{ at } T_c \]

Next: temperature dependence? charm vs. bottom universality?
Towards Precision Determination of D_s

Rapid developments among theorists to resolve/understand trivial/non-trivial differences between different models

EMMI Rapid Reaction Task Force - R. Rapp et al., 1803.03824
Jet-HQ Working Group - S.S. Can et al., 1809.07894

Figure:
- Effects and consequence in various systems
- Core ingredients:
 - HQ – (local) Coupling to hot matter
 - Transport of HQ in medium
 - Hadronization process at FO
 - Effective lagrangian, Effective potential, Effective DOF
 - Transport equation, Path integrals,...
- Theoretical understanding of other QGP aspects

Source:
- Courtesy of P.B. Gossiaux – QM18
$D^0 v_1$ - New Insight to QGP Properties

Data

D-meson v_1 sensitive to
- T dependence of HQ diffusion coefficient
- geometry tilt of the QGP source
- Initial magnetic field ($D/\bar{D} v_1$ difference)

Hydro Model

$\gamma \propto T$ vs $\propto T^{1.5}$

STAR, QM18

Chatterjee & Bozek, 1804.04893
Bottom Quark: Cleaner Measure of HQ Diffusion

Is charm quark heavy enough?

$2\pi T D_s \sim 2 - 5 \quad @ \quad T_c$

scattering rate: $\Gamma_{\text{coll}} \sim 3 / D_s \sim 1 \text{ GeV}$

- comparable to charm quark mass

Sizable correction to Langevin approach for charm quarks

Das et al., PRC 90 (2014) 044901
b-jet and B^+ Hadron at High p_T

- $R_{AA}(b$-jet) $\sim R_{AA}(\text{incl. jet})$ at $p_T > 70$ GeV/c
- $R_{AA}(B^+) \sim R_{AA}(D) \sim R_{AA}(h)$ at $p_T > 10$ GeV/c

mass hierarchy? -> going to lower p_T
Bottom Suppression at Low p_T

5.02 TeV pp (27.4 pb$^{-1}$) + PbPb (530/404/368 μb$^{-1}$)

CMS Supplementary

Light
- h^+

Charm
- $D^0 + \overline{D}^0$
- (b \rightarrow) D^0
- (b \rightarrow) J/ψ
- $1.8 < y_l < 2.4$
- $y_l < 2.4$

T_{AA} and lumi. uncertainty

CMS, arXiv:1810.11102; STAR/PHENIX QM17

$R_{AA}(J/\psi_B) \sim R_{AA}(D_B) > R_{AA}(D)$ at $p_T < 10$ GeV/c

$R_{AA}(e_B) < R_{AA}(e_D)$ at 3–8 GeV/c (2σ)

Mass hierarchy of parton energy loss
Summary

Significant charm hadron flow
- \(2\pi T D_s \sim 2-5@T_c\)

- \(T\)-dependence, \(c\) vs. \(b\) universality, relation to \(\eta/s\) etc.

Large \(D_s/D^0\) and \(\Lambda_c/D^0\) enhancement
- coalescence hadronization

- precise heavy baryon, relation to color confinement

\(R_{AA}(B) > R_{AA}(D)\) at low \(p_T\); \(\sim R_{AA}(D)\) at high \(p_T\)
- mass hierarchy of energy loss

- transition between collisional vs. elastic energy loss
Prospective Heavy Flavor Program in Future

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RHIC</td>
<td>HF Phase-I</td>
<td>pp</td>
<td>CME</td>
<td>BES-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HF Phase-II</td>
</tr>
<tr>
<td>LHC</td>
<td>LS1</td>
<td>Run-2</td>
<td></td>
<td>LS2</td>
<td></td>
<td>Run-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next generation MAPS pixel detectors: **ITS2@ALICE, MVTX@sPHENIX**

Precision open bottom

Heavy flavor baryons and correlations

![Graph showing CMS Projection](image1.png)

![Graph showing sPHENIX Simulation](image2.png)
Monolithic Active Pixel Sensor (MAPS)

MAPS pixel cross-section (not to scale)

Properties:
- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 μm) → MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

<table>
<thead>
<tr>
<th>MAPS and competition</th>
<th>MAPS</th>
<th>Hybrid Pixel</th>
<th>CCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granularity</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Small material budget</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Readout speed</td>
<td>+</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Radiation tolerance</td>
<td>+</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

See Xiangming Sun’s talk (Sun.) for more applications
D⁰ v₂ Compared with Models

- D⁰ v₂
 <-> Charm quark diffusion in QGP
- Provide strong constraints to model calculations

<table>
<thead>
<tr>
<th>Compared Models</th>
<th>x²/NDF</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBATECH [1]</td>
<td>17.3/8</td>
<td>0.026</td>
</tr>
<tr>
<td>TAMU c quark diff. [2]</td>
<td>12.0/8</td>
<td>0.15</td>
</tr>
<tr>
<td>TAMU no c quark diff. [2]</td>
<td>33.7/8</td>
<td>4.5 x 10⁻⁵</td>
</tr>
<tr>
<td>Duke (Bayesian) [3]</td>
<td>8.5/8</td>
<td>0.39</td>
</tr>
<tr>
<td>3D viscous hydro [4]</td>
<td>3.7/6</td>
<td>0.71</td>
</tr>
<tr>
<td>LBT [5]</td>
<td>13.3/8</td>
<td>0.10</td>
</tr>
<tr>
<td>PHSD [6]</td>
<td>8.7/7</td>
<td>0.27</td>
</tr>
<tr>
<td>Catania [7]</td>
<td>9.7/8</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Bayesian Analysis to Extract HQ Diffusion Coefficient

Bayesian analysis based on Duke model: Langevin + Hydro

Y. Xu et al, PRC 97 (2018) 014907
What is the p- and T- dependence of HQ diffusion coefficient?

How will bottom measurement help determine HQ diffusion coefficient?
\[\Lambda_c \text{ Baryon} \]

Does \(\Lambda_c \) yield go beyond SHM limit?

He and Rapp, 1902.08889