Quarkonium production and polarization

Vincent Cheung

Nuclear Physics Group,
Physics Department,
University of California, Davis

Apr 12, 2019
Overview

1 Introduction
 - Quarkonium Families
 - Production and Detection
 - Polarization

2 Production Models

3 Yields and Distributions

4 Progress of Polarization Predictions

5 Summary and Future
Quarkonia: bound states of $c\bar{c}$ or $b\bar{b}$

- combination of two spin 1/2 particles and orbital angular momentum \rightarrow different spin states $2S+1 L_J$

- all color singlets $2S+1 L_J [1]$

- produced in hh, γp, $\gamma\gamma$, and $e^+ e^-$

- states below the $H\bar{H}$ ($H = D, B$) threshold decay electromagnetically into $\ell^+ \ell^-$
Some Production Diagrams in Different Systems

\(hh \) (RHIC, Tevatron, LHC)

\(\gamma p \) (HERA)

\(\gamma \gamma \) (LEP)

\(e^+e^- \) (KEKB)
S states ($J^{PC} = 1^{--}$) decay to $\ell^+\ell^-$, so they can be observed as peaks in dimuon mass spectra.

$\chi(nP)$ states ($J^{PC} = J^{++}$) can be reconstructed by matching an S state with a low momentum photon.

η_c and η_b states ($J^{PC} = 0^{--}$) decay hadronically.
Polarization

- The tendency for quarkonium states of spin J to be in a particular $|J, J_z\rangle$ state is known as polarization

- For S state ($J = 1$) quarkonium, if $J_z = 0$, then it is longitudinally polarized

- If $J_z = \pm 1$, then it is transversely polarized

- It is typical to represent the polarization in terms of the polarization parameter, λ_ϑ, which ranges from -1 to +1

- For the S states, $\lambda_\vartheta = -1$ refers to pure longitudinal production while $\lambda_\vartheta = +1$ refers to pure transverse production

\[J^P = 1^- \text{ (S states)}^{[1]} \]

\[
\lambda_\vartheta = \frac{\sigma_{J_z=+1} + \sigma_{J_z=-1} - 2\sigma_{J_z=0}}{\sigma_{J_z=+1} + \sigma_{J_z=-1} + 2\sigma_{J_z=0}}
\]

Polarization

- For the χ_1 ($J = 1$) and χ_2 ($J = 2$) states, the polarization parameter is defined as the polarization parameter of the product J/ψ or $\Upsilon(nS)$ if production comes purely from χ state feed down.

- $\chi_c \rightarrow J/\psi + \gamma$, $\chi_b \rightarrow \Upsilon(nS) + \gamma$

$J^P = 1^+$ (χ_1 P states)2

$$\lambda_\vartheta = \frac{2\sigma_{J_z=0} - \sigma_{J_z=+1} - \sigma_{J_z=-1}}{2\sigma_{J_z=0} + 3\sigma_{J_z=+1} + 3\sigma_{J_z=-1}}$$

$J^P = 2^+$ (χ_2 P states)2

$$\lambda_\vartheta = \frac{-6\sigma_{J_z=0} - 3\sigma_{J_z=+1} + 6\sigma_{J_z=+2} - 3\sigma_{J_z=-1} + 6\sigma_{J_z=-2}}{10\sigma_{J_z=0} + 9\sigma_{J_z=+1} + 6\sigma_{J_z=+2} + 9\sigma_{J_z=-1} + 6\sigma_{J_z=-2}}$$

There are three commonly used choices for the z-axis, namely z_{HX} (helicity), z_{CS} (Collins-Soper), and z_{GJ} (Gottfried-Jackson).

θ is defined as the angle between the z-axis and the direction of travel for the ℓ^+ in the quarkonium rest frame.
Extracting Polarization

\[
\frac{d\sigma}{d\Omega} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos(2\phi) + \lambda_{\theta\phi} \sin(2\theta) \cos \phi
\]

- Polarization parameters can be obtained by fitting the angular spectra as a function of \(\theta \) and \(\phi \)
- One can write \(\phi_\theta = \phi - \frac{\pi}{2} \mp \frac{\pi}{4} \) for \(\cos \theta \leq 0 \), then \(^3\)
- \[
\frac{d\sigma}{d\phi_\theta} \propto 1 + \frac{\sqrt{2}\lambda_{\theta\phi}}{3+\lambda_\theta} \cos \phi_\theta
\]

Importance of Polarization

- Polarization predictions are strong tests of production models
- Detector acceptance depends on polarization hypothesis
- Understanding polarization helps narrow systematic uncertainties

Quarkonium Production Models

Still unsettled

- J/ψ and Υ are discovered in 1974 and 1977 respectively
- The quarkonium production mechanism has not been solved
- Current models cannot describe yield and polarization simultaneously

Color Singlet Model (CSM) [Berger, Jones 81; Baier, Rückl 81]

- constrains the production of $c\bar{c}$ to the color singlet state only
- calculated up to $O(\alpha_s^4)$
Quarkonium Production Models

Non Relativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

- an Effective Field Theory where production is described as an expansion in powers of α_s and the relative velocity of the quarks, v/c

$$|\psi_Q\rangle = \mathcal{O}(1)|3S_1^{[1]}\rangle + \mathcal{O}(v)|3P_j^{[8]}g\rangle + \mathcal{O}(v^2)|3S_1^{[8]}gg\rangle + \mathcal{O}(v^2)|1S_0^{[8]}g\rangle$$

- At each order, the production is further factorized into perturbative Short Distance Coefficients and non-perturbative Long Distance Matrix Elements (LDMEs); e.g. for J/ψ, $\sigma_{J/\psi} = \sum_n \sigma_{c\bar{c}[n]} \langle O_{J/\psi}[n]\rangle$

- $\sigma_{c\bar{c}[n]}$ are cross sections in a particular color and spin state n calculated by perturbative QCD

- $\langle O_{J/\psi}[n]\rangle$ are the LDMEs that describe the conversion of $c\bar{c}[n]$ state into final state J/ψ, assuming that the hadronization does not change the momentum

- LDMEs are conjectured to be universal and the mixing of LDMEs are determined by fitting to data
Quarkonium Production Models

Color Evaporation Model (CEM) [Fritzsch 77; Halzen 77; Glück, Owens, Reya 78; Gavai et al. 95; Schuler, Vogt 95]

Leading order cross section:

\[
\sigma = F_Q \sum_{i,j} \int_{4m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 dx_2 f_{i/p}(x_1, \mu^2) f_{j/p}(x_2, \mu^2) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s} - x_1 x_2 s),
\]

\(F_Q \) is a universal factor for the quarkonium state \(Q \) and is independent of the projectile, target, and energy.

- all Quarkonium states are treated like \(Q\bar{Q} (Q = c, b) \) below \(HH \) (\(H = D, B \)) threshold
- all diagrams for \(Q\bar{Q} \) production included, independent of color
- fewer parameters than NRQCD (one \(F_Q \) for each Quarkonium state)
- \(F_Q \) is fixed by comparison of NLO calculation of \(\sigma_Q^{CEM} \) to \(\sqrt{s} \) for \(J/\psi \) and \(\Upsilon \), \(\sigma(x_F > 0) \) and \(Bd\sigma/dy|_{y=0} \) for \(J/\psi \), \(Bd\sigma/dy|_{y=0} \) for \(\Upsilon \)
Quarkonium Production Models

Improved CEM (ICEM) [Ma, Vogt 16]

\[
\frac{d\sigma_\psi(P)}{dp_T} = F_\psi \int_{M_\psi}^{2M_D} dM \frac{M}{M_\psi} \frac{d\sigma_{c\bar{c}}(M, P')}{dM dp_T} \bigg|_{p_T=(M/M_\psi)p_T}
\]

\(M_\psi\) is the mass of the charmonium state, \(\psi\)

- first new advance in the basic CEM model since 1990s
- able to describe relative production of \(J/\psi\) and \(\psi(2S)\), where the ratio is flat in the traditional CEM
- distinction between the momentum of the \(c\bar{c}\) pair and that of charmonium so that the \(p_T\) spectra will be softer and thus may explain the high \(p_T\) data better
- employed to calculate production and polarization of all S states, and relative production of \(\chi\) states
Results in the CSM

Fragmentation:

- Leading order calculations at $O(\alpha_s^3)$ underestimate the Tevatron p_T distributions
- Gluon fragmentation to J/ψ is required to increase cross section to match data $[6,7]$ (effectively α_s^4)
- only works with the J/ψ (sometimes)

Disagreement with other data in the CSM

\(\psi(2S) \) at CDF (PLB 333, 548 (1994).) \quad \Upsilon(1S) \) at CDF (PRL 88, 161802 (2002).)

\(\frac{J}{\psi} \) at LEP2 (PLB 565, 76 (2003).) \quad \frac{J}{\psi} \) at ZEUS (EPJC 27, 173 (2003).)
Results in NRQCD - A global fit of LDMEs

$hh \ (p_T > 3 \ \text{GeV})$

$\gamma p \ (p_T > 3 \ \text{GeV})$

$\gamma\gamma \ (\text{Right: } p_T > 1 \ \text{GeV})$

e^+e^-

Relative production in NRQCD

- $\psi(2S)$ to J/ψ ratio agrees with data at most p_T \[^{[10]}\]
- relative production of χ_c and χ_b are dominated by CSM contribution \[^{[11]}\]

\(\eta_c \) production in NRQCD

- all results so far overpredict LHCb \(\eta_c \) yields
- results can be described by CSM alone
- PRL 114, 092005 (2015) and PRL 114, 092006 (2015) describe the \(\eta_c \) results but not the \(J/\psi \) polarization
Results in the CEM[12]

- one fitting factor for each quarkonium state
- great consistency with experimental results over large range of \sqrt{s}

\[J/\psi \quad \sum \Upsilon \text{'s} \]

Results in the CEM[12,13]

- overall less rigorous, but accurate predictions
- no advances in the basic model since 1990s

Results in the ICEM

\[
\frac{d\sigma_\psi(P)}{dp_T} = F_\psi \int_{M_\psi}^{2M_D} \frac{M}{dM} \frac{d\sigma_{c\bar{c}}(M, P')}{dp_T} \left| p'_T = (M/M_\psi) p_T \right|
\]

- explicit charmonium mass dependence \(\rightarrow \) the ratio of cross sections is no longer \(p_T \)-independent
- distinction between the momentum of the \(c\bar{c} \) pair and that of charmonium \(\rightarrow \) \(p_T \) spectra will be softer and thus may explain the high \(p_T \) data better
Relative production in the ICEM\cite{14,15}

\begin{align*}
\frac{d\sigma}{dp_T} \approx \frac{\sigma}{d}
\end{align*}

\begin{align*}
2 < y < 4.5
= 8 \text{ TeV s}, \quad b_{\chi} \rightarrow p+p
\end{align*}

\begin{align*}
14 \quad & \text{Y. Q. Ma and R. Vogt, Phys. Rev. D 94, 114029 (2016).} \\
\end{align*}
J/ψ polarization problem in NRQCD[16]

Included in fits

- e^+e^-
- ep

Butenschon & Kniehl

- $p_T > 3$ GeV

Gong et al.

- $p_T > 5$ GeV

Chao et al.

- $p_T > 7$ GeV

$\Upsilon(nS)$ Polarization in NRQCD

- polarization of $\Upsilon(nS)$ is better described than for J/ψ
- polarization prediction in NRQCD is improved by including the feed down decays from χ_b states (bottom row)
Polarization in the k_T-factorized ICEM\cite{15}

Feed-down production:

$$R_{J/\psi} = \sum_{Q,J_z} c_Q S_Q^J R_Q^J$$

Polarization of prompt J/ψ:

$$\lambda_{J/\psi} = \frac{1 - 3 R_{J/\psi}^{J_z=0}}{1 + R_{J/\psi}^{J_z=0}}$$

Polarization is independent of F_Q and scales, mass is the only uncertainty.

- Charmonium is slightly longitudinally polarized in the CS frame.
- Bottomonium is nearly unpolarized in all frames.

Comparison of Models

<table>
<thead>
<tr>
<th>Model Properties</th>
<th>NRQCD</th>
<th>CEM</th>
<th>ICEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadronization model</td>
<td>in terms of LDMEs</td>
<td></td>
<td>in terms of F_Q</td>
</tr>
<tr>
<td>n in $\mathcal{O}(\alpha_s^n)$</td>
<td>4</td>
<td>3</td>
<td>3 (production)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (polarization)</td>
</tr>
<tr>
<td>collision systems</td>
<td>all</td>
<td></td>
<td>$h + h$ only so far</td>
</tr>
<tr>
<td>production uncertainty</td>
<td>LDMEs</td>
<td>m_Q, μ_R, μ_F</td>
<td></td>
</tr>
<tr>
<td>polarization</td>
<td>J/ψ X</td>
<td>not calculated</td>
<td>J/ψ ✓</td>
</tr>
<tr>
<td></td>
<td>Υ ✓</td>
<td></td>
<td>Υ ✓</td>
</tr>
<tr>
<td>polarization uncertainty</td>
<td>feed down contribution</td>
<td>N/A</td>
<td>m_Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future

NRQCD
- Are the LDMEs universal?
- Can NRQCD describe η_c and J/ψ without breaking J/ψ polarization and results from other experiments?

ICEM
- Consider more collision systems
- NLO in collinear factorization