Previous Streaming Readout Workshops and Funding

Douglas Hasell

MIT

Streaming Readout III

Christopher Newport University

December 3–5, 2018
January 27, 2017 at MIT

- Conceptual ideas
 - streaming readout concept - Jan Bernauer (MIT)
 - ...

- various approaches
 - sPHENIX - Martin Purschke (BNL)
 - JLab - Graham Heyes (JLab)
 - TDCPix - Matt Noy (CERN)
 - computing in future triggers - Gianluca Lamanna (CERN)
 - concept for detector DAQ - Ryan Herbst (SLAC)
 - ...

D.K. Hasell - MIT
January 29–30, 2018 at MIT

- Introduction - Jan Bernauer (MIT)
- TOPSiDE - Jose Repond (ANL)
- sPHENIX - Martin Purschke (BNL)
- Evolution of JLab DAQ - Graham Heyes (JLab)
- SoLID - Alexandre Camsonne (JLab)
- SLAC DAQ efforts - Ryan Herbst (SLAC)
- Streaming readout for 12 GeV program - Chris Cuevas (JLab)
- Front-end ASICs and readout electronics - Shaorui Li (BNL)
- Alphacore - Esko Mikkola
- LHCb and machine learning - Mike Williams (MIT)
- Streaming readout and EIC - Markus Diefenthaler (JLab)
January 29–30, 2018 at MIT

- **Introduction** - Jan Bernauer (MIT)
- TOPSiDE - Jose Repond (ANL)
- sPHENIX - Martin Purschke (BNL)
- Evolution of JLab DAQ - Graham Heyes (JLab)
- SoLID - Alexandre Camsonne (JLab)
- SLAC DAQ efforts - Ryan Herbst (SLAC)
- Streaming readout for 12 GeV program - Chris Cuevas (JLab)
- Front-end ASICs and readout electronics - Shaorui Li (BNL)
- Alphacore - Esko Mikkola
- LHCb and machine learning - Mike Williams (MIT)
- Streaming readout and EIC - Markus Diefenthaler (JLab)
Previous Streaming Readout Workshops

January 29–30, 2018 at MIT

- Introduction - Jan Bernauer (MIT)
- TOPSiDE - Jose Repond (ANL)
- sPHENIX - Martin Purschke (BNL)
- Evolution of JLab DAQ - Graham Heyes (JLab)
- SoLID - Alexandre Camsonne (JLab)
- SLAC DAQ efforts - Ryan Herbst (SLAC)
- Streaming readout for 12 GeV program - Chris Cuevas (JLab)
- Front-end ASICs and readout electronics - Shaorui Li (BNL)
- Alphacore - Esko Mikkola
- LHCb and machine learning - Mike Williams (MIT)
- Streaming readout and EIC - Markus Diefenthaler (JLab)
Previous Streaming Readout Workshops

January 29–30, 2018 at MIT

- Introduction - Jan Bernauer (MIT)
- TOPSiDE - Jose Repond (ANL)
- sPHENIX - Martin Purschke (BNL)
- Evolution of JLab DAQ - Graham Heyes (JLab)
- SoLID - Alexandre Camsonne (JLab)
- SLAC DAQ efforts - Ryan Herbst (SLAC)
- Streaming readout for 12 GeV program - Chris Cuevas (JLab)
- Front-end ASICs and readout electronics - Shaorui Li (BNL)
- Alphacore - Esko Mikkola
- LHCb and machine learning - Mike Williams (MIT)
- Streaming readout and EIC - Markus Diefenthaler (JLab)
January 29–30, 2018 at MIT

- Introduction - Jan Bernauer (MIT)
- TOPSiDE - Jose Repond (ANL)
- sPHENIX - Martin Purschke (BNL)
- Evolution of JLab DAQ - Graham Heyes (JLab)
- SoLID - Alexandre Camsonne (JLab)
- SLAC DAQ efforts - Ryan Herbst (SLAC)
- Streaming readout for 12 GeV program - Chris Cuevas (JLab)
- Front-end ASICs and readout electronics - Shaorui Li (BNL)
- Alphacore - Esko Mikkola
- LHCb and machine learning - Mike Williams (MIT)
- Streaming readout and EIC - Markus Diefenthaler (JLab)
Jan Bernauer - Introduction and Food for Thought

- future experiments may have to handle high luminosities
- triggered readout difficult or unrealistic
- need cheap, fast readout solutions for many detector types
- DarkLight as a case study, 2 TB/s
- need to standardise hardware and software
- FEE detector specific but components can be modular
- data transport ? software? Open Source?
Markus Diefenthaler - Streaming readout and EIC

- estimated EIC event rates 450 kHZ
- data rate 21 GB/s
- want to do 3D imagining of quarks and gluons
- emphasise common interfaces: geometry, event, track reconstruction
- structures must to robust to allow exascale computing
- machine learning in real-time: calibration, reconstruction, analysis
- connected, smart detectors, self optimising
Jose Repond - TOPSiDE Concept of an EIC Detector

- maximize coverage, 5D concept (E, x, y, z, t)
- very high granularity, 50–80 million channels
- imaging calorimeter, low bit depth, detector technology exists
- simplifies tracking, particle flow, PID, software corrections
- advantages of streaming: software trigger, complex triggers possible
- trigger electronics not needed!
- DHCAL test case, 500,000 1 × 1 cm² channels, 1 bit resolution
- DCAL chip (FNAL, ANL)
Martin Purschke - Streaming Readout in sPHENIX

- TPC uses 8 SAMPA ASICs on FEE - 256 channels, 10 MS/s, 10 bit
- FEE readout with ATLAS FELIX card (Data Aggregation Module)
- FELIX card in PC (Event Buffering and Data Compression)
- continuous readout of TPC, select chunk correlated with trigger
- working point 100 Gb/s to storage
Alexandre Camsonne - SoLID DAQ Overview

- 100,000–200,000 channels, PVDIS or SIDIS
- 200–600 kHz trigger rate
- FADC readout via VXS 4 GB/s
- large number of GEM channels and occupancy problematic
- also problem with network and storage limits
- need to reduce data in real time
Ryan Herbst - SLAC DAQ Efforts

- Advanced Instrumentation for Research (AIR) group at SLAC
- strong group developing electronics as needed
- general purpose Reconfigurable Cluster Element (RCE)
- system-on-chip based on Zynq FPGA
- external bi-directional high speed links 12 Gb/s each
- 8 RCE nodes on a Cluster On Board (COB)
- provides DAQ on custom ATCA blade
- experiment specific rear transition module, 96 high speed serial links
- basis in a number of experiments
Shaorui Li - Front-end ASICs and readout electronics

- staff of 45 at BNL instrumentation division
- several ASIC’s designed for specific experiments
Esko Millola - Alphacore

- high performance analog, mixed signal, RF electronics
- integrated circuit design, 1 or 16 channels / chip
- pre-amplifiers, ADC’s, readout integrated circuits
- 10–12 bit ADCs, 50–200 MS/s
- < 1 ps timing resolution on 10 GS/s ADC
- radiation hard
- currently pipeline readout, VME based trigger processor
- 272 channels / VME crate, trigger communication via VXS serial bus
- global trigger capable of 64 crates
- GlueX 1.5 GB/s stored, 50+ VXS systems, custom trigger electronics
 - works but . . .
- TDIS, timing for proton track $\sim \mu$s, electron \simns, 4 GB/s !
- propose to use SAMPA ASIC
- SoLID 30 GB/s,
- streaming concept detector signals in serial stream
- FPGA stream processor, stream aggregator
Chris Cuevas - Streaming readout for 12 GeV program

- VITA 41 system, 250 MHz FADC, 8 μs pipeline, FPGA
- extracts energy sum and timing, data for cluster finding, etc.
- provides data compression, high level information
- VME64X, 4 lanes 8Gb/s to each FADC slot
- VX5 Trigger Processor in each crate
- Global trigger processor
- Trigger supervisor distributes trigger back to crates for readout
Mike Williams - LHCb and machine learning

- 1 TB/s input rate after zero suppress
- feature building in FPGA reduce rate to 50 GB/s 1 MHz
- real-time reconstruction, particles $P_T > 0.5$ GeV, 8 GB/s
- buffer on 10 PB disk
- full real-time reconstruction for all particles
- machine learning heavily used
- real-time alignment and calibration
- 0.7 GB/s final data set (mix of full and partial events)
- run 3 will process 5 TB/s
Status of Funding and Prospects

Marco Battaglieri - Italian Ministry of Foreign Affaires
- \(\sim 55,000 \) € for first year starting mid-2019
- \(\sim 15,000 \) € matching funds from INFN expected 2/2019
- 3 year program includes post-doc, equipment, and travel

Marco Battaglieri and Jan Bernauer - BNL EIC Detector R&D
- recognition of streaming readout consortium (eRD23) as a group
- \$ 7,500 for travel and to collaborate with sub-detector groups
 - planning to support travel to next workshop in Genova

Markus Dieffenthaler - JLab LDRD (Laboratory Directed R&D)
- development and evaluation of techniques for streaming readout
- \$ 30,000 to develop hardware and software solutions
 - prototype components and parameters for streaming readout
 - prototype event level, real time analysis