The Spin Structure of the proton at low Q^2 from CLAS EG4

A. Deur

Jefferson Lab

03/08/2019

On behalf of the EG4-proton analysis team: X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, H. Kang
The EG4 experiment Group

Main goal: measurement of the generalized Gerasimov-Dreall-Hearn (GDH) sum for the proton and deuteron at low Q^2.

E03-006 (NH$_3$):
Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita
Students: H. Kang (Seoul U.), K. Kovacs* (UVa)

E06-017 (ND$_3$)
Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer
Students: K. Adhikari* (ODU)

Main goal: inclusive analyses. Also, exclusive analysis

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

* Graduated.
The EG4 experiment Group

Main goal: measurement of the generalized Gerasimov-Dreall-Hearn (GDH) sum for the proton and deuteron at low Q^2.

E03-006 (NH_3):
Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita
Students: H. Kang (Seoul U.), K. Kovacs* (UVa)

E06-017 (ND_3)
Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer
Students: K. Adhikari* (ODU)

K.P. Adhikari et al. (CLAS Collaboration),
"Measurement of the Q^2 dependence of the Deuteron Spin Structure Function g_1 and its Moments at Low Q^2 with CLAS” PRL 120, 062501 (2018)

Main goal: inclusive analyses. Also, exclusive analysis

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

* Graduated.
The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...). Can be used to:

- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)
The GDH and Generalized GDH Sum Rules

Sum rule: relation between an **integral** of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)

GDH sum rule: derived for real photons ($Q^2=0$):

\[
\int_{\nu_{\text{thr}}}^{\infty} \frac{\sigma_A(\nu) - \sigma_P(\nu)}{\nu} \, d\nu = \frac{-4\pi^2 S\alpha\kappa^2}{M^2}
\]

- QED coupling constant
- Target anomalous magnetic moment
- Target mass
- Target spin
- Photon spin parallel to S
- Photoprod. cross section with photon spin anti-parallel to S
The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)

GDH sum rule: derived for real photons ($Q^2=0$):

$$
\int_{\nu_{\text{thr}}}^{\infty} \frac{\sigma_A(\nu)-\sigma_P(\nu)}{\nu} \, d\nu = -\frac{4\pi^2 S \alpha \kappa^2}{M^2} \, I_1(0,Q^2)
$$

QED coupling constant

- target anomalous magnetic moment
- target mass
- target spin
- photon spin parallel to S
- photoprod. cross section with photon spin anti-parallel to S

Generalized GDH sum rule: valid for any Q^2. Recover the original GDH sum rule as $Q^2 \to 0$

$$
\Gamma_1(Q^2) = \int_0^{\nu_{\text{thr}}} g_1(x,Q^2) \, dx = \frac{Q^2}{2M^2} \, I_1(0,Q^2)
$$

g_1(\nu,Q^2): \text{first spin structure function (mostly a longitudinal target pol. observable)}

$\Gamma_1(0,Q^2)$: first covariant polarized VVCS amplitude

⇒ Study QCD at any scale

Hadronic degrees of freedoms
Partonic degrees of freedoms

Chiral perturbation theory (χpt)
OPE, pQCD

Lattice QCD, SDE, AdS/QCD

A. Deur, CLAS col. meeting. 03/08/2019
The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)

GDH sum rule: derived for real photons ($Q^2 = 0$):

$$\int_{\nu_{\text{thr}}}^{\infty} \frac{\sigma_A(\nu) - \sigma_P(\nu)}{\nu} \, d\nu = \frac{-4\pi^2 S \alpha \kappa^2}{M^2}$$

- QED coupling constant
- Target anomalous magnetic moment
- Target mass
- Photon spin anti-parallel to S
- Photoprod. cross section with photon spin parallel to S

Generalized GDH sum rule: valid for any Q^2. Recover the original GDH sum rule as $Q^2 \to 0$

$$\Gamma_1(Q^2) = \int_{0}^{x_{\text{thr}}} g_1(x,Q^2) \, dx = \frac{Q^2}{2M^2} I_1(0,Q^2)$$

- $g_1(\nu,Q^2)$: first spin structure function (mostly a longit. target pol. observable)
- $I_1(\nu,Q^2)$: first covariant polarized VVCS amplitude

\Rightarrow Study QCD at any scale

Hadronic degrees of freedoms

Chiral perturbation theory (χPT)

Partonic degrees of freedoms

OPE, pQCD

Lattice QCD, SDE, AdS/QCD

EG4
Spin polarizabilities sum rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
• Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
• Measure the global property (e.g. spin polarizability sum rules)

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:
\[\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2\left(g_1 - \frac{4M^2}{Q^2}\right) x^2g_2 dx \]
\[g_2(\nu, Q^2): \text{second spin structure function (mostly a perp. target pol. observable)} \]

Longitudinal-Transverse polarizability:
\[\delta_{LT} = \frac{4e^2M^2}{\pi Q^6} \int x^2(g_1 + g_2) dx \]
Spin polarizabilities sum rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:

\[
\gamma_0 = \frac{4e^2 M^2}{\pi Q^6} \int x^2 \left(g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right) dx
\]

Longitudinal-Transverse polarizability:

\[
\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx
\]

\(g_2(v,Q^2) \) suppressed in \(\gamma_0 \)
Precise mapping of spin structure function moments in intermediate Q^2 region for p, n and d.

PQCD, models and data agree.
Not so clear for χ_{pT}.
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_1^p</th>
<th>Γ_1^n</th>
<th>Γ_1^{p-n}</th>
<th>Γ_1^{p+n}</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}^n</th>
<th>d_2^p</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

A: agree with data
X: disagree with data
- : no calculation available
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_1^p</th>
<th>Γ_1^n</th>
<th>Γ_1^{p-n}</th>
<th>Γ_1^{p+n}</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}^n</th>
<th>d_2^p</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

A: agree with data
X: disagree with data
-: no calculation available

~no unmeasured low-x
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_p^1</th>
<th>Γ_n^1</th>
<th>Γ_{1-p-n}^1</th>
<th>Γ_{1+p+n}^1</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}^n</th>
<th>d_2^p</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

A: agree with data
X: disagree with data
-: no calculation available

~no unmeasured low-x

Δ suppressed
Δ suppressed
Δ suppressed (expected)
“δ_{LT} crisis”
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_1^p</th>
<th>Γ_1^n</th>
<th>Γ_1^{p-n}</th>
<th>Γ_1^{p+n}</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}^n</th>
<th>d_2^p</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

A: agree with data
X: disagree with data
-: no calculation available

~no unmeasured low-x

Δ suppressed

Volker D. Burkert
PRD 63, 097904 (2001)
[nucl-th/0004001]

Δ suppressed

Δ suppressed (expected)
"δ_{LT} crisis"
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_1^p</th>
<th>Γ_1^n</th>
<th>Γ_1^{p-n}</th>
<th>Γ_1^{p+n}</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}^n</th>
<th>d_2^p</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **A**: agree with data
- **X**: disagree with data
- **-**: no calculation available

- Mixed success of χpT;
- Surprising discrepancies (δ_{LT} crisis);
- Validity range smaller than hoped for: $Q^2 < \sim 0.1$ GeV$^2 \Rightarrow$ Ambiguous χpT tests.

\Rightarrow Need new data on p and n (d, 3He) at very low Q^2 (i.e. for integrals over v: low angles).

Purpose of EG4.
EG4 setup

- $Q^2>0$: electron beam (polarized). Energies: 3.0, 2.3, 2.0, 1.3 & 1.0 GeV
- $g_1^{p,n}$: ~longitudinally polarized target

DNP NH$_3$ and ND$_3$ target:

![Diagram of EG4 setup showing calormeters, Cerenkov counters, drift chambers, torus field, and polarized target.](image)
EG4 setup

- $Q^2 > 0$: electron beam (polarized). Energies: 3.0, 2.3, 2.0, 1.3 & 1.0 GeV
- $g_1^{p,n}$: ~longitudinally polarized target

DNP NH$_3$ and ND$_3$ target:

- g_1 from pol. cross-section differences (not asymmetries, as in EG1, EG1dvcs)
- Advantage: dilution from unpol. target material cancels out
- Small angles: outbending torus field, new Möller shield; target at -1m
- Cross-sections \Rightarrow controlled (i.e high) efficiency at small angles. New Cerenkov detector (INFN). Installed in sector 6. Covered down to 6°.
EG4 setup

- $Q^2 > 0$: electron beam (polarized). Energies: 3.0, 2.3, 2.0, 1.3 & 1.0 GeV
- $g_1^{p,n}$: ~longitudinally polarized target

DNP NH$_3$ and ND$_3$ target:

Two different target lengths to verify external radiative corrections (big elastic tails at low Q+high ν).

So far, only long target data have been analyzed.

(Deuteron data: only on long target.)
EG4 kinematic coverage

Proton

Deuteron

$Q^2 (\text{GeV/c})^2$

$W (\text{GeV})$

$E = 1.05$

$E = 1.34$

1.99 GeV

2.26 GeV

2.99 GeV

$W (\text{GeV})$

$Q^2 (\text{GeV/c})^2$

1.99 GeV

$E = 1.34$
g_{1p} from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D., …

EG4 data

“Model” (Fit to EG1b (+ other published data)+extrap. Used as intermediary step to extract g_{1p}.)

Example of “Model” variation: assess uncertainties on extraction method, radiative corrections, …
g$_{1p}$ from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,…

$\langle Q^2 \rangle = 0.12$ GeV2

EG4 data

"Model" (Fit to EG1b (+ other published data)+extrap. Used as intermediary step to extract g$_{1p}$.)

Example of "Model" variation: assess uncertainties on extraction method, radiative corrections, …
g_{1p} from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,…

$\langle Q^2 \rangle = 0.12 \text{ GeV}^2$

Example of “Model” variation: assess uncertainties on extraction method, radiative corrections, …

g_{1p} not model-dependent
\[\Gamma_{1p} = \int g_{1p}(x,Q^2)dx \]

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,...

- Lowest \(Q^2 \) decreased by factor of \(\sim 4 \)
- Much improved precision
- Small unmeasured low-\(x \) contribution

⇒ Clean test of \(\chi pt \)
\[\Gamma_{1p} = \int g_{1p}(x, Q^2) \, dx \]

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,…

- Tension between EG4 and EG1 above \(Q^2 \sim 0.1 \text{ GeV}^2 \).
- EG4 data and \(\chi \text{PT} \) results agree up to \(Q^2 \sim 0.04 \text{ GeV}^2 \).
- Phenomenological models (Pasechnik et al, Burkert-Ioffe) agree well.
Another generalization of GDH sum: \(I_{TT} = \int_{\nu_{th}}^{\infty} \frac{K_f}{v} \frac{\sigma_A(v,Q^2) - \sigma_P(v',Q^2)}{v} dv \)

No suppressing \(Q^2 \) factor.
Contains \(g_2 \) (not measured by EG4)

Original GDH sum rule: \(-0.526 \text{ GeV}^{-2}\)

- \(\chi PT \) results of Lensky et al. agree with data up to \(Q^2 \sim 0.035 \text{ GeV}^2 \).
- Bernard et al. \(\chi PT \) calculation agrees with data up to \(Q^2 \sim 0.02 \text{ GeV}^2 \).
- Data compatible with GDH sum rule.
• Tension with EG1b, but EG4 and Hall A preliminary data agree.
• χPT results of Lensky et al. disagree with data.
• Bernard et al. χPT calculation agrees for lowest Q^2 points only.
What left to do for EG4:

• Finalize systematic analysis (soon);
• Include short target data into analysis (soon);
• Finalize analysis note, and write paper.
Conclusion

General agreement with \(\chiPT \), but its \(Q^2 \)-range of validity is limited (up to \(Q^2 \sim 0.04 \text{ GeV}^2 \))
General agreement with χPT, but its Q^2-range of validity is limited (up to $Q^2 \sim 0.04$ GeV2).

For the EG4 results from deuteron: Lensky et al. agrees (typically up to $Q^2 \sim 0.1$ GeV2)

A satisfactory theoretical description of spin observables at low Q^2 remains challenging.
Previous data: high to intermediate Q^2

State of χpT affairs before EG4 run (2006):

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ^p_1</th>
<th>Γ^n_1</th>
<th>Γ^{p-n}_1</th>
<th>Γ^{p+n}_1</th>
<th>γ^p_0</th>
<th>γ^n_0</th>
<th>γ^{p-n}_0</th>
<th>γ^{p+n}_0</th>
<th>δ^p_{LT}</th>
<th>d^p_2</th>
<th>d^n_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al. [14]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ji et al. [15]</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kao et al. [16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

A: agree with data
X: disagree with data
-: no calculation available

• **Mixed** success of χpT;
• Surprising discrepancies (δ_{LT} crisis);
• Validity range smaller than hoped for: $Q^2 < \sim 0.1 \text{ GeV}^2$ \Rightarrow Ambiguous χpT tests.

\Rightarrow Need new data on p and n (d, ^3He) at very low Q^2 (i.e. for integrals over ν: low angles).

Purpose of EG4.
Up to date state of χpT affairs (2019)

Agreement between data and χpT up to $Q^2 = 0.1$ GeV2:

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Γ_1^p</th>
<th>Γ_1^n</th>
<th>Γ_1^{p-n}</th>
<th>Γ_1^{p+n}</th>
<th>γ_0^p</th>
<th>γ_0^n</th>
<th>γ_0^{p-n}</th>
<th>γ_0^{p+n}</th>
<th>δ_{LT}</th>
<th>d_2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ji et al. 1999</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bernard et al. 2002</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kao et al. 2002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bernard et al. 2012</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Lensky et al. 2014</td>
<td>X</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>A</td>
</tr>
</tbody>
</table>

- **A**: agree with data
- **X**: disagree with data
- **-**: no calculation available

Table would have more **A** if we lower the Q^2 range for comparison.

Δ suppressed

~no low-x

Δ suppressed

Δ suppressed

Δ suppressed “δ_{LT} crisis”

A. Deur, CLAS col. meeting. 03/08/2019
Summary and perspectives

• EG4: Low Q^2 measurement using polarized e^- on polarized p and d, over a large x-range in order to study spin sum rules.
• New detector necessary to reach these kinematics.
• Main goal: unambiguous test of χPT.
• Doubly polarized inclusive cross-section analysis.
Summary and perspectives

• EG4: Low Q^2 measurement using polarized e^- on polarized p and d, over a large x-range in order to study spin sum rules.

• New detector necessary to reach these kinematics.

• Main goal: unambiguous test of χPT.

• Doubly polarized inclusive cross-section analysis.

• Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis).

 X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

• Inclusive analysis on d published in 2018.

 K.P. Adhikari et al. (CLAS Collaboration). PRL 120, 062501 (2018)

• Proton data analysis and analysis note will be finalized soon.
Summary and perspectives

• EG4: Low Q^2 measurement using polarized e^- on polarized p and d, over a large x-range in order to study spin sum rules.

• New detector necessary to reach these kinematics.

• Main goal: unambiguous test of χPT.

• Doubly polarized inclusive cross-section analysis.

• Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (sym. analysis).
 X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

• Inclusive analysis on d published in 2018.
 K.P. Adhikari et al. (CLAS Collaboration). PRL 120, 062501 (2018)

• Proton data analysis and analysis note will be finalized soon.

• Data on Γ_1, I_{TT}, and γ_0 showed that χPT has mixed success, depending on the χPT method and observable.

• Original GDH sum rule ($Q^2=0$) seems fine for p and n.
Summary and perspectives

• EG4: Low Q^2 measurement using polarized e^- on polarized p and d, over a large x-range in order to study spin sum rules.

• New detector necessary to reach these kinematics.

• Main goal: unambiguous test of χPT.

• Doubly polarized inclusive cross-section analysis.

• Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis).

• Inclusive analysis on d published in 2018.

• Proton data analysis and analysis note will be finalized soon.

• Data on Γ_1, I_{TT}, and γ_0 showed that χPT has mixed success, depending on the χPT method and observable.

• Original GDH sum rule ($Q^2=0$) seems fine for p and n.

• EG4: part of JLab program to measure benchmark spin observables for χPT \Rightarrow More low Q^2 data to come:
 - g_1, g_2, Γ_1, Γ_2, I_{TT}, γ_0 and δ_{LT} for the neutron and ^3He (Hall A E97110). Coming soon.
 - g_2, g_1, Γ_2, Γ_1, I_{TT}, δ_{LT} and γ_0 for the proton (Hall A E08027). Coming soon.

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

K.P. Adhikari et al. (CLAS Collaboration). PRL 120, 062501 (2018)
Extra slides
Differences between EG1b and EG4

• **Radiative corrections.**
 Large radiative tails for EG4 kinematics ⇒ revisited standard RCSLACPOL code and improved its handling of elastic tails (external elastic radiative tail seems to have been missing).

• **Different detector** for main trigger and electron ID (new **INFN Cherenkov counter** for EG4).
 Much higher efficiency for outbending electrons, but still some systematic uncertainty for point-to-point electron detection efficiency and acceptance.

• **Absolute cross-sections differences** used to extract \(g_{1p} \), not **relative asymmetries**.
 Absolute normalization needed. But no target dilution (usually, a large correction). No \(F_{1p} \) input needed.

• **Different kinematics** (beam energy, angles) to obtain \(x \) and \(Q^2 \) common to EG4 and EG1b.
 Implies in particular different \(g_{2p} \) inputs.

Some of these differences may be the origin of the tension between the EG4 and EG1b results.

The issue is still being investigated.

Agreement with Hall A preliminary result is reassuring (but non-binding).
The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:
- Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- Measure the global property (e.g. spin polarizability sum rules)

GDH sum rule: derived for real photons ($Q^2 = 0$):

\[
\int_{\nu_{\text{thr}}}^{\infty} \frac{\sigma_{A}(\nu)-\sigma_{P}(\nu)}{\nu} d\nu = \frac{-4\pi^2 S \alpha \kappa^2}{M^2} \targetanomalousmagneticmoment
\]

- ν_{thr}: threshold photon energy
- M: target mass
- σ_{A}, σ_{P}: photoproduction cross section with photon spin parallel to S and anti-parallel to S

Generalized GDH sum rule: valid for any Q^2. Recover the original GDH sum rule as $Q^2 \rightarrow 0$

\[
\int_{\nu_{\text{thr}}}^{\infty} g_1(\nu,Q^2) d\nu = \frac{-4\pi^2 S \alpha \kappa^2}{M^2}
\]

χpt: low energy effective theory of QCD obtained using a Lagrangian consistent with QCD’s chiral symmetry (neglecting quark masses). Captures the main essence of QCD at low Q^2, without the complicated details. Systematic perturbative expansion valid for e.g. $Q << m_\pi$.

- $g_1(\nu,Q^2)$: first spin structure function (mostly a longitudinal target polarization observable)
- $I_1(\nu,Q^2)$: first covariant polarized VVCS amplitude

OPE, pQCD: perturbative QCD

Lattice QCD, SDE, AdS/QCD: non-perturbative QCD

Chiral perturbation theory (χpt)

Note: The diagram and equation represent a simplified visualization of the GDH and Generalized GDH sum rules. The equations and text provide a more detailed and accurate representation of the theoretical framework.