Update: Studies of neutrino energy reconstruction using electron scattering data

Mariana Khachatryan - ODU
Outline

1. **Introduction.**
2. **March 2019 status:**
 - Analysis review ongoing.
 - Looked at (e,e’), (e,e’p) events with zero detected pions and photons.
 - Reconstructed energies $E_{\text{Cal}}, E_{\text{QE}}$.
 - Subtraction for undetected π^+, π^- and extra p complete.
 - Started subtraction for undetected γ.
3. **Status today:**
 - Completed subtraction for undetected π^+, π^-, γ and extra p.
 - Modified e$^-$ momentum correction.
 - Analyzed the 1.1 GeV e2a data.
 - Determined binding energy values for E_{Rec} calculations.
T2K experiment $L=295\text{km}$

$P(\nu_\mu \rightarrow \nu_\mu) = \sin^2 (2\theta_{23}) \times \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_\nu} \right)$

θ_{23}

Δm_{23}^2

#Observed / #Expected

Real vs. Reconstructed

Energy Reconstruction for QE reactions

(1) Cherenkov detectors:
- Detect: leptons & pions
- Miss: protons and neutrons

(2) Tracking detectors:
- Detect: Charged particles + π^0
- Miss: Neutrons and charged particles below threshold.

Use Lepton kinematics
Assuming QE interaction

\[E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))} \]

- ε - single nucleon separation energy
- M - nucleon mass
- m_l - outgoing lepton mass
- k_l, E_l - lepton three momentum, energy
- θ_l - lepton scattering angle

Use Final-State Calorimetry
Assuming low residual excitations

\[E_{Cal} = E_l + \sum T_p + \varepsilon + \sum E_{\pi} \]

- T_p - kinetic energy of knock out proton
- E_{π} - energy of produced meson
E2a experiment

Targets:

CLAS: ^3He, ^4He, ^{12}C, ^{56}Fe
T2K: CH, H$_2$O
Minerva: ^3He, ^4He, C, Fe, H$_2$O
Microboone: Ar
Miniboone: mineral oil (C, H, O)
Nova: C$_6$H$_3$(CH$_3$)$_3$
DUNE: Ar

Neutrino expt. beam energies

- T2K off-axis: 1.1 GeV
- T2K on-axis: 2.2 GeV
- NOvA near detector: 4.4 GeV
- CLAS energies

Miniboone
MINERvA
QE Event Selection

As close to QE as one can get:
- Scattered electron,
- Knockout proton,
- Zero pion,
- Zero gammas in the EC.

Scale the e^- scattering data with $1/\sigma_{\text{Mott}}$ to have 'neutrino like' data!
Want $0\pi (e,e')$ and $(e,e'p)$ events. Need to account for undetected π, γ and extra protons.
Background Subtraction in (e,e’) analysis

Subtract for π^\pm and γ:

Data Driven Correction:
1. Use measured (e,e’π^\pm/\gamma) events,
2. Rotate π around q to determine its acceptance,
3. Subtract (e,e’) π^\pm/\gamma contributions,
4. Repeat for 2 π^\pm/\gamma, 3 π^\pm/\gamma.

4.46 GeV 56Fe

Counts

$N_{\pi^\pm/\gamma}$

π^\pm/\gamma multiplicity

0 1 2 3 4
Selecting non-radiation γ.

γ detected in EC

$\theta_{e-\gamma}$ [Deg.]

$\varphi_{\gamma} - \varphi_{e-}[\text{Deg.}]$

2 GeV ^{56}Fe

radiation γ
(e, e') π^\pm/γ subtraction

2.26 GeV

\[\pi^\pm/\gamma \text{ subtraction} \]

\[\nu = 0 \]

4He

π detected in TOF+DC

γ detected in EC

\[\frac{N_\gamma}{N_{\pi^\pm}} = 0 \]
Background Subtraction in (e,e’p) analysis

Subtract for undetected π^\pm, γ and multiple p.

Data Driven Correction:
1. Use measured (e,e’pπ^\pm/γ) events,
2. Rotate π around q to determine their acceptance,
3. Subtract (e,e’p)π^\pm/γ contributions
4. Do the same for 2p, 3p, 2p+π^\pm/γ etc

\[e \rightarrow (e,e'p\pi^\pm/\gamma) \]

\[q \]

\[p \]

\[\pi^\pm/\gamma \]

\[56\text{Fe} 4.4 \text{ GeV} \]

\[N_p \]

\[N_{\pi^\pm/\gamma} \]

\[\begin{array}{cccccc}
0 & 0.24 & 0.08 & 0 & 0 & 0 \\
0 & 1.13 & 0.40 & 0.08 & 0 & 0 \\
0 & 4.43 & 1.86 & 0.40 & 0.06 & 0 \\
0 & 16.10 & 7.52 & 2.00 & 0.33 & 0.04 \\
0 & 23.70 & 15.86 & 4.83 & 0.92 & 0.12 \\
\end{array} \]

\[\times 10^4 \]

Contributions accounted for

\[2p0\pi \]

\[1p0\pi \]

\[2p1\pi \]

\[1p1\pi \]

\[1p0\pi \]
56Fe (e,e’p)

4.46 GeV

Subtraction converges

$N_{\pi^{\pm}/\gamma} = 0$

N_p

Uncorr.
No undet. 1p
1p π^{\pm}/γ
+ 2p
+ 3p
+ 4p
+ rest

56Fe 4.4 GeV

Contributions accounted for

$N_{\pi^{\pm}/\gamma}$
Proton subtraction

Subtraction undet. π^\pm, p

$N_{\pi/\gamma} = 0$

2.26 GeV

4^4He

4.46 GeV

^{56}Fe

Weighted counts

$E_{\text{Cal}}[\text{GeV}]$
3He (e,e'pp)n

Problem: neutron peak in wrong location
3He (e,e’pp)n

Solution: multiply e^{-} momentum by a different factor α in each sector

$$MM^{2} = (P - P_{e})^{2} = M_{n}^{2}$$

$$P_{e}(\alpha p_{e}, \alpha p_{e} \hat{e}p)$$

$$P(E, \vec{P}) = P_{3He} + P_{Beam} - P_{p_{1}} - P_{p_{2}}$$

$$\alpha = \frac{-0.5(M_{n}^{2} - P^{2})}{Ep_{e} - \vec{P}p_{e}}$$

<table>
<thead>
<tr>
<th>e^{-} momentum correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries: 4396</td>
</tr>
<tr>
<td>Mean: 1.027</td>
</tr>
<tr>
<td>RMS: 0.04723</td>
</tr>
<tr>
<td>χ^{2}/ndf: 8.373/13</td>
</tr>
<tr>
<td>Constant: 75.89 ± 3.63</td>
</tr>
<tr>
<td>Mean: 1.001 ± 0.000</td>
</tr>
<tr>
<td>Sigma: 0.00959 ± 0.00050</td>
</tr>
</tbody>
</table>
3He (e,e'pp)n

e⁻ momentum correction

Same set of α factors at 2 and 4 GeV (Same magnetic filed)
Correcting for binding energy

\[E_{Cal} = E_l + T_p + \varepsilon \]

\[\varepsilon = E_{Bind}^A - E_{Bind}^{A-1} \]

\(\varepsilon(3\text{He}) = 5 \text{ MeV} \)
\(\varepsilon(4\text{He}) = 20 \text{ MeV} \)
\(\varepsilon(12\text{C}) = 16 \text{ MeV} \)
\(\varepsilon(56\text{Fe}) = 10 \text{ MeV} \)

Use these offsets to correct the binding energy used in \(E_{Cal} \) and \(E_{QE} \)

<table>
<thead>
<tr>
<th>Target</th>
<th>(E_{Cal}) offset [2GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3\text{He})</td>
<td>4 MeV</td>
</tr>
<tr>
<td>(4\text{He})</td>
<td>5 MeV</td>
</tr>
<tr>
<td>(12\text{C})</td>
<td>5 MeV</td>
</tr>
<tr>
<td>(56\text{Fe})</td>
<td>11 MeV</td>
</tr>
</tbody>
</table>
Results
Large A dependence

2.26 GeV

$E_{Cal} = E_l + T_p + \varepsilon$

$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$

1. E_{QE} has worse peak resolution than E_{Cal}.
2. Same tail for $E_{QE} + E_{Cal}$.
3. ^{56}Fe is predominantly tail.
4. ^{56}Fe is much worse than ^4He.
Large E dependence

1.16 GeV

$E_{\text{Cal}}(e,e'p)$

$E_{\text{QE}}(e,e')$

$E_{\text{QE}}(e,e'p)$

2.26 GeV

$E_{\text{Cal}}(e,e'p)$

$E_{\text{QE}}(e,e')$

$E_{\text{QE}}(e,e'p)$

4.46 GeV

$E_{\text{Cal}}(e,e'p)$

$E_{\text{QE}}(e,e')$

$E_{\text{QE}}(e,e'p)$

^{12}C

Better reconstruction at lower energies.
Agreement between the methods doesn’t imply correct energy reconstruction.
The fractional energy feed down is bigger at higher energies.

\[(e,e'p)\]
1. The first use of electron data to test neutrino energy reconstruction algorithms
 - select zero-pion events to enhance quasi-elastic signal
 - Subtract for undetected π and extra p.
 - just using scattered lepton (E_{QE})
 - used in Cherenkov-type neutrino detectors
 - total energy of electron plus proton (E_{Cal})
 - used in calorimetric neutrino detectors
2. Only 0.1-0.66 of events reconstruct to within 5% of the beam energy
 - better for lighter nuclei
 - improved by a transverse momentum cut
3. Added 1GeV analysis.
4. Analysis complete.
5. Update note for committee.
6. Anticipate paper submission soon.

Summary

Afroditi Papadopoulou (MIT@FNAL)
Adi Ashkenazi (MIT@FNAL)
Chris Marshal (LBL)
3He $(e,e'pp)n$ moment correction

1 GeV

| h1_Wepp | Entries: 16062
| Mean: 1.052
| RMS: 0.1391
| χ^2/ndf: 3.946/8
| Constant: 885.2 ± 13.5
| Mean: 0.9398 ± 0.0009
| Sigma: 0.02805 ± 0.0007 |

4 GeV

| h1_Wepp | Entries: 9145
| Mean: 1.004
| RMS: 0.09864
| χ^2/ndf: 5.113/9
| Constant: 3.27 ± 53.65
| Mean: 0.0035 ± 0.9395
| Sigma: 0.00352 ± 0.03311 |

2 GeV

| h1_Wepp | Entries: 11965
| Mean: 0.9979
| RMS: 0.08879
| χ^2/ndf: 8.229/4
| Constant: 452.8 ± 13.4
| Mean: 0.9398 ± 0.0005
| Sigma: 0.01712 ± 0.00063 |

Same set of α factors at 2 and 4 GeV (Same magnetic filed)
$^3\text{He} \,(e,e'pp)n$ e$^-$ momentum correction

Graphs showing the momentum correction for $^3\text{He} \,(e,e'pp)n$ at 2 GeV, 1 GeV, and 4 GeV, with the momentum transfer M_n and the angle φ in degrees as variables.
(e,e') π^\pm/γ subtraction

56Fe 4.46 GeV

π^\pm subtraction

π^\pm/γ subtraction

π detected in TOF+DC
γ detected in EC
$^{56}\text{Fe (e,e'p)}$

Proton subtraction

4.46 GeV

$N_{\pi/\gamma} = 0$

Subtraction undet. π^\pm, p

Subtract undetected π^\pm/γ and p