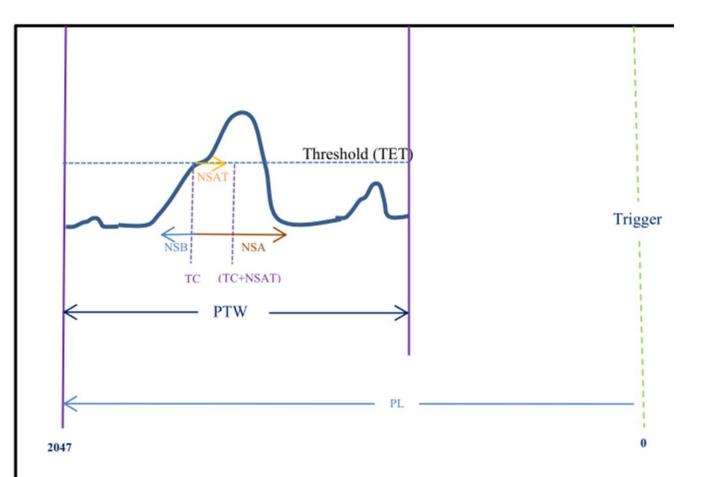
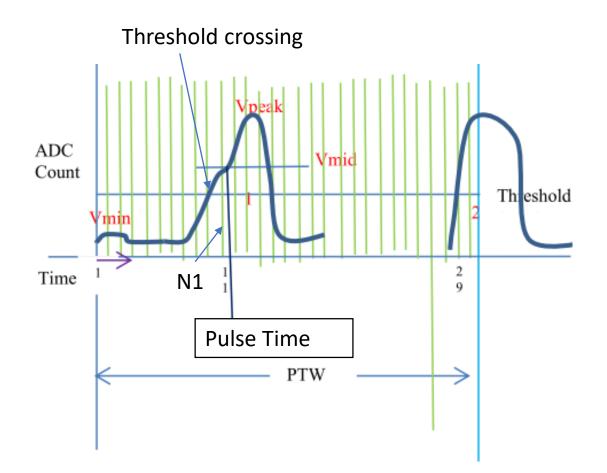

HCANA and lessons learned from analyzing TDC1190 and FADC250 data

Mark Jones

Hall C Winter 2020 Collaboration meeting


TDC1190

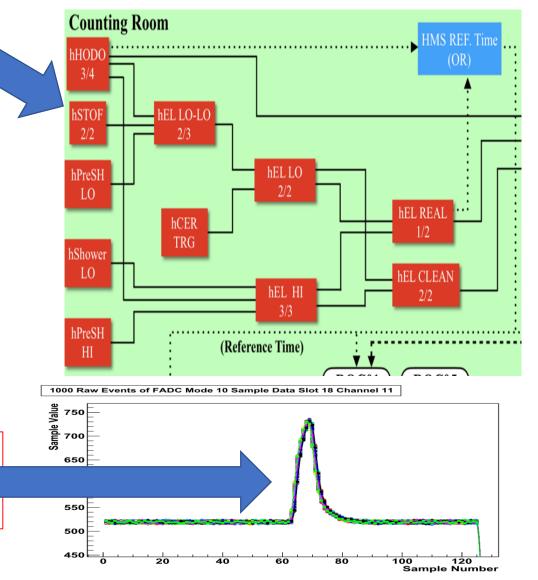
- Used by Scintillators and Drift Chambers for time information
- Multi-Hit TDC, Hall C reads all the leading edge pulses within a match window width.
 - Width is about 0.8 to 1.1us for Scintillators and 2us for DC. (Has varied some over time)
 - Window offset relative to trigger input. (Has varied some over time)
- Time Resolution of trigger input is 25ns.
 - Trigger input can be Singles (3/4 HODO, EL_REAL, EL_CLEAN) or Coincidence.
- Need to take time difference between two channels to reach 0.0997ns/channel resolution.
- Use one channel of TDC to be the "reference time" signal.
 - Need signal that will be there for every trigger. Reference time is a copy of the trigger input.


FADC250 Pulse Integral and Pedestal

- When Trigger received FADC250 looks for up to four pulses in buffer.
- From trigger time, it has Programmable Lookback (PL) and the Programmable Trigger Window (PTW).
- Hall C run in "mode 9" which returns the pulse pedestal, integral, peak and time.

- Pulse found if NSAT=1 samples (4ns ADC) above Threshold.
- Threshold Crossing (TC) defined as first sample to cross threshold.
- Pulse Integral sum of samples from NSB=3 before TC to NSA=26 after. (116ns).
- Pulse Pedestal is the sum of the NPED=4 samples at the beginning of the PTW.
- After finding pulse, next pulse can be found when sample is below Threshold. Even if this within the NSA.

FADC250 Timing & Peak


- VMIN = average of first 4 sample of PTW
- Pulse amp = VPEAK = the sample after threshold crossing when sample ADC decreases.
- VMID= (VPEAK-VMIN)/2. Determine sample N1 containing VMIN
- Pulse Time = 64*[VMID-V(N1)]/[V(N1+1)-V(N1)]
 - Time in 62.5ps bins
- If any of the first 4 samples of PTW above threshold then cannot determine the VMID
 - Pulse Time = time of threshold crossing
 - Time in 4ns bin
 - Pulse amp = 0
 - In HCANA, pulses with pulse amp =0 are not used!

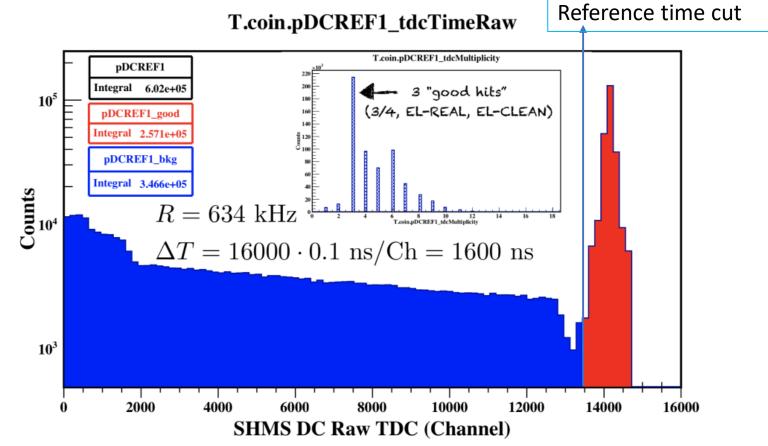
Brief History of Reference Time

Which triggers to use as reference time?

- In the beginning
 - OR of HODO, STOF, EL_REAL, EL_CLEAN
 - Each delayed.
- Jan 2018
 - OR of HODO, EL_REAL, EL_CLEAN
 - Remove STOF, since EL_REAL contains STOF
- Aug 2018 (<u>logbook entry</u>)
 - OR of HODO, EL_REAL
 - EL_REAL for every EL_CLEAN
- Dec 2019 (logbook entry)
 - HODO only
 - Removed STOF from EL_LO_LO
- Reference time for FADC250 made by putting the logic reference time through an RC circuit to produce an analog signal.

<u>"Hall C Trigger Electronics</u>" by C. Yero

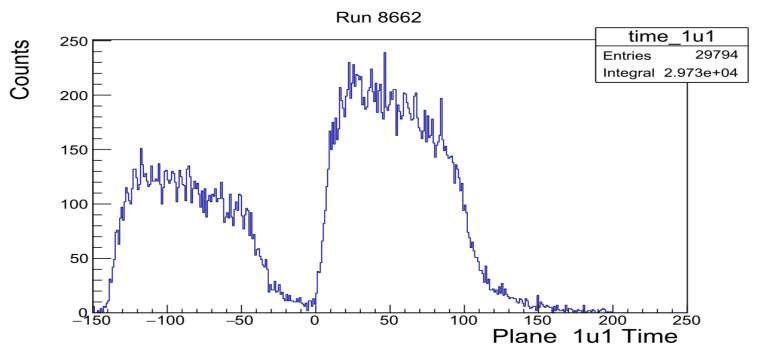
Need to select reference time for each detector

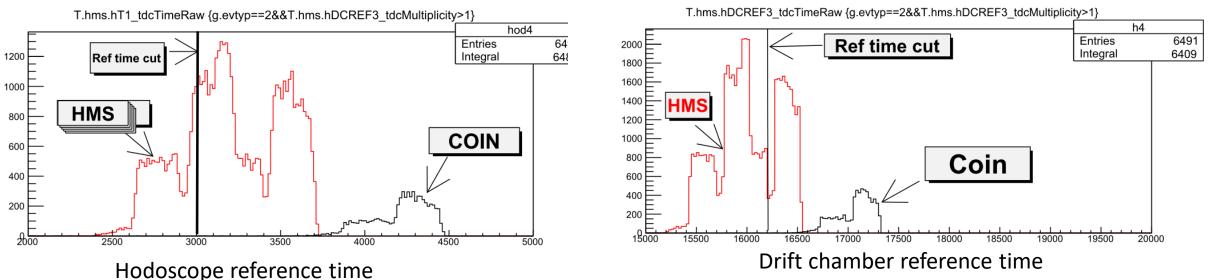

- Designate the reference time signal for each detector in the detector map.
- Generally, each TDC1190 needs its own reference time
- Access the reference time data with the TRIGDET class.

Ref. Time Name	Physical Location	hcana Leaf Name	
hFADC_TREF_ROC1	ROC1::SLOT18::Ch11	T.{spec}.hFADC_TREF_ROC1_adcPulseTimeR	aw
hTref1	ROC1::SLOT02::Ch06	T.{spec}.hT1_tdcTimeRaw	
hTref2	ROC1::SLOT20::Ch127	T.{spec}.hT2_tdcTimeRaw	
hDCREF1	ROC3::SLOT08::Ch15	T.{spec}.hDCREF1_tdcTimeRaw	
hDCREF2	ROC3::SLOT16::Ch63	T.{spec}.hDCREF2_tdcTimeRaw	Exception is that in HMS ROC3
hDCREF3	ROC3::SLOT04::Ch111	T.{spec}.hDCREF3_tdcTimeRaw 🔶	
hDCREF4	ROC3::SLOT13::Ch95	T.{spec}.hDCREF4_tdcTimeRaw	one reference time for all TDC
$hDCREF5^{3}$	ROC3::SLOT02::Ch127	T.{spec}.hDCREF5_tdcTimeRaw	
Ref. Time Name	Physical Location	<i>hcana</i> Leaf Name	
pFADC_TREF_ROC2	ROC2::SLOT14::Ch11	T.{spec}.pFADC_TREF_ROC2_adcPulseTimeRa	W
pTref1	ROC2::SLOT20::Ch15	T.{spec}.pT1_tdcTimeRaw	
pTref2	ROC2::SLOT19::Ch31	T.{spec}.pT2_tdcTimeRaw	
pDCREF1	ROC6::SLOT06::Ch79	T.{spec}.pDCREF1_tdcTimeRaw	
pDCREF2	ROC6::SLOT07::Ch79	T.{spec}.pDCREF2_tdcTimeRaw	
pDCREF3	ROC6::SLOT08::Ch79	T.{spec}.pDCREF3_tdcTimeRaw	
pDCREF4	ROC6::SLOT09::Ch79	T.{spec}.pDCREF4_tdcTimeRaw	
pDCREF5	ROC6::SLOT10::Ch79	T.{spec}.pDCREF5_tdcTimeRaw	
pDCREF6	ROC6::SLOT11::Ch47	T.{spec}.pDCREF6_tdcTimeRaw	
pDCREF7	ROC6::SLOT12::Ch47	T.{spec}.pDCREF7_tdcTimeRaw	
pDCREF8	ROC6::SLOT13::Ch47	T.{spec}.pDCREF8_tdcTimeRaw	
pDCREF9	ROC6::SLOT14::Ch15	T.{spec}.pDCREF9_tdcTimeRaw	
pDCREF10	ROC6::SLOT15::Ch47	T.{spec}.pDCREF10_tdcTimeRaw	

In Hall C DocDB, <u>"General Hall C Analysis Procedure in 12 GeV Era"</u> by Carlos Yero gives details and examples of setting these cuts.

Select reference time that matches the trigger

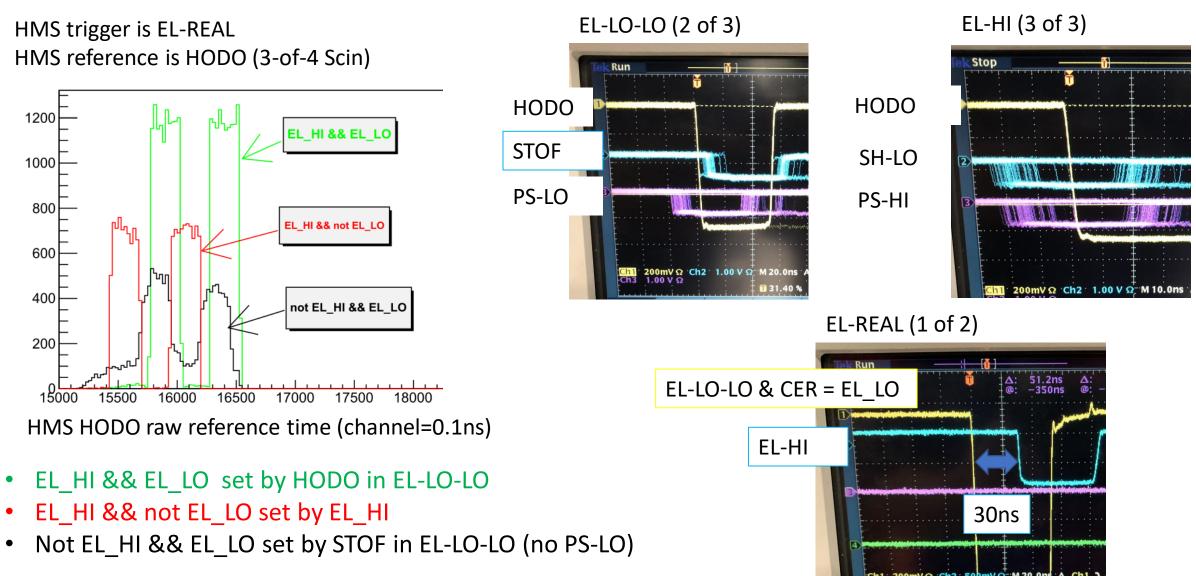

- Large match window width ($0.8 2 \mu s$) multiplied by trigger rate can give high multiplicity.
- Set reference time cut. Select first hit that is above time cut. If none, then select first in window.


In Hall C DocDB, <u>"General Hall C Analysis Procedure in 12 GeV Era"</u> by Carlo Yero gives details and examples of setting these cuts.

Lesson One: Problem

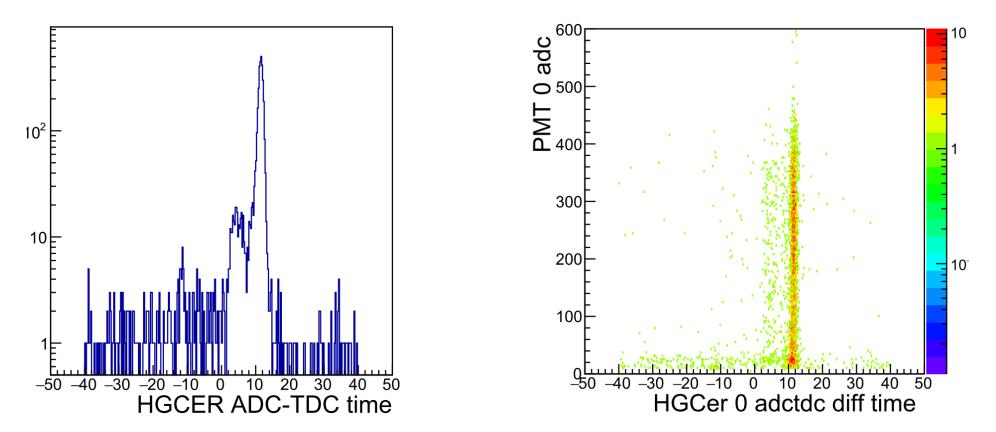
• Problem that two distinct drift time spectra seen online:

Lesson One: Solution

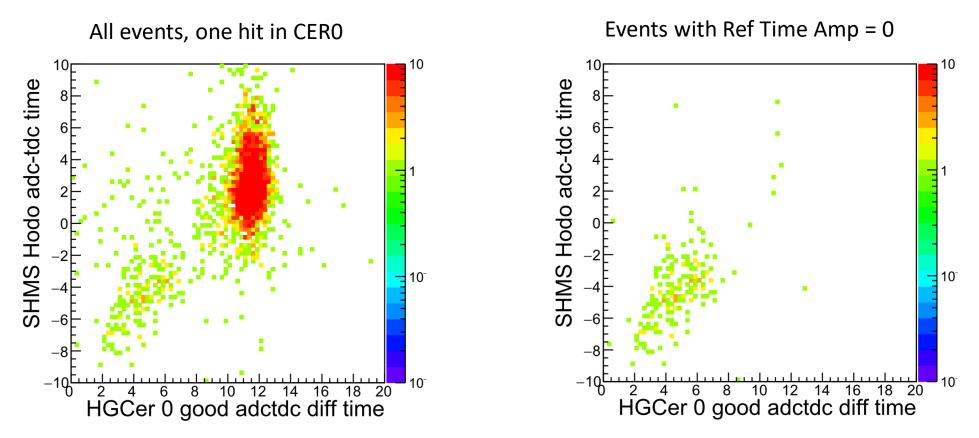


- Reference time cut set for COIN trigger and in middle of HMS Singles.
- The Hodo and DC detectors would pick different reference times.

Lesson Learned:

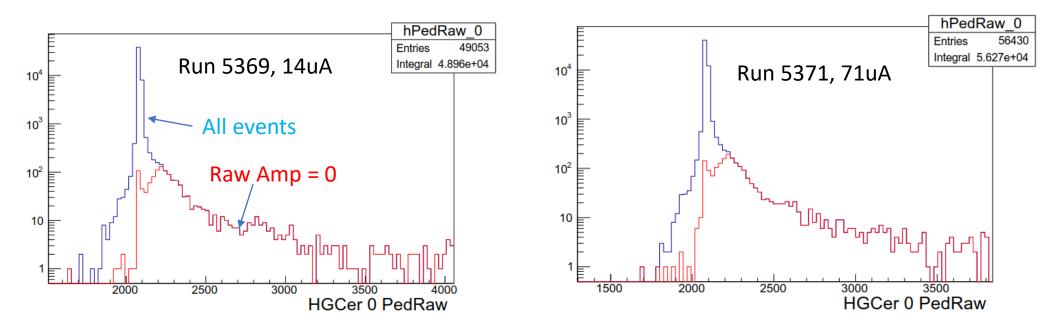

- 1. Ideally, modify HCANA to have separate reference time cut for different triggers.
- 2. For now, need to have cut which proper treats all triggers or separate replay.
- 3. In general, want to have each detector pick the same reference time.
 - Need to have reference time cut for each detector at similar time distance from the good time.

Details of HODO Reference Time spectra



Lesson Two : Problem

- For each detector calculate ADC time HODO starttime (ADCTDC Diff time) to identify good pulse in FADC channel.
- SHMS Heavy Gas, events with only one hit on one PMT show two peaks. Each PMT has same behavior.
- Should both peaks be included as good pulses? ADC versus ADCTDC Diff time look similar


Lesson Two : Solution

- Lesson Learned:
 - 1. The ADC reference time must have bad pedestal region, so using the coarse 4ns time.
 - 2. All events are good and should be included in analysis.

<u>Lesson Three : Problem</u>

- What to do when accidental hit in first four samples of FADC250?
- Presently HCANA eliminates the hit. In effect, makes a rate dependent loss.

Run	Current	PMT0			
5369	15uA	1.2%	1.7%	1.3%	1.4%
5367	45	3.0%	3.9%	2.8%	3.0%
5371	71	3.8%	5.3%	4.0%	4.1%

Lesson Three: Solution

- No easy solution.
- One solution:
 - Since pedestal for a channel is has small sigma, use the average pedestal to determine the pedestal subtracted pulse integral.
 - Problem is that the pulse integral is over 116ns so can get negative pulse integral if mismatch between the average pedestal and the "true" pedestal.
- Second solution:
 - If interested only in knowing if channel had an ADC signal (for example, Cerenkov or Aerogel)
 - When pulse amp =0 then just set pulse integral to a nominal value.
 - Remember that the pulse time will be coarse.
- Long Term solution:
 - Change FADC250 firmware
 - When hit is in first four samples, then save the entire sample window and save the VPEAK.
 - Later in software can determine the pedestal from other parts of the sample window.

<u>Conclusion</u>

- Lesson One:
 - Need to be careful when setting reference time gates when analyzing data taken with multiple triggers.
 - Need to be careful about matching the location of reference time in FADC and TDC.
- Lesson Two:
 - If accidental hit in the pedestal region of FADC, then FADC reference time will become a coarse threshold crossing time.
 - Need to widen ADCTDC diff time window to allow for the shift in time.
 - Rate dependent effect.
- Lesson Three:
 - If accidental hit in the pedestal region of FADC, presently HCANA ignores the hit.
 - This gives a rejection factor that is rate dependent.
 - Best solution to this problem may depend on detector and experiment.
 - Long term need modification to the FADC250 firmware.