Probing Nucleon Spin Structure Using Deep Inelastic Scattering

E12-06-121: Neutron g_2 and d_2

Murchhana Roy
University of Kentucky

January 29th, 2020
Deep Inelastic Scattering

Unpolarized cross section:

\[
\frac{d^2 \sigma}{d \Omega dE'} = \frac{\alpha^2}{4 E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M} F_1(x, Q^2) \sin^2 \theta + \frac{1}{v} F_2(x, Q^2) \cos^2 \frac{\theta}{2} \right)
\]

- Unpolarized structure functions \(F_1\) and \(F_2\) contain information about the momentum structure of the target nucleon.

Polarized cross section:

\[
\frac{d^2 \sigma}{dE'd\Omega} (\downarrow \uparrow \rightarrow \uparrow \rightarrow) = \frac{4 \alpha^2 E'}{M Q^2 \sqrt{v} E} \left[(E+E' \cos \theta) g_1(x, Q^2) - \frac{Q^2}{v} g_2(x, Q^2) \right] = \Delta \sigma_{||}
\]

\[
\frac{d^2 \sigma}{dE'd\Omega} (\downarrow \rightarrow \rightarrow \rightarrow) = \frac{4 \alpha^2 \sin \theta E'^2}{M Q^2 \sqrt{v} E} \left[v g_1(x, Q^2) + 2 E g_2(x, Q^2) \right] = \Delta \sigma_{\perp}
\]

- Polarized structure functions \(g_1\) and \(g_2\) encode information about the spin structure of the target nucleon.

\(Q^2 = 4\text{-momentum transfer squared of the virtual photon}\)

\(v = E - E' = \text{energy transfer}\)

\(\theta = \text{scattering angle}\)

\(x = \text{Fraction of nucleon momentum carried by the struck quark}\)
\(g_2 \) and Quark-Gluon Correlations

- In naive quark parton model, nucleon is viewed as a collection of non interacting, point like constituents.

- \(g_2 \) has no interpretation in naive quark parton model, provides information on quark-gluon correlation.

- \(g_2 \) is among the cleanest higher twist observables – contributes to leading order (twist-2 is leading twist) at the transverse spin asymmetry.

\[
g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \bar{g}_2(x, Q^2)
\]

- Twist-2 term (Wandzura & Wilczek).

\[
g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{g_1(y, Q^2)}{y} \, dy
\]

- Twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston).

\[
\bar{g}_2(x, Q^2) = -\int \frac{\partial}{\partial y} \left(\frac{m_q}{M} h_T(y, Q^2) - \xi(y, Q^2) \right) \frac{dy}{y}
\]
d_2: Clean Probe of Quark-Gluon Correlations

- **d_2** is a clean probe of quark-gluon correlations / higher twist effects - third moment of the linear combination of the spin structure function.

\[
d_2(Q^2) = 3 \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx = 3 \int_0^1 x^2 \bar{g}_2(x, Q^2) dx
\]

- Related to matrix element in OPE, which represents average color Lorentz force on the struck quark due to the remnant di-quark system and it is cleanly computable using Lattice QCD.

- Connected to “color polarizability”.

\[
\chi_E = \frac{(4d_2 + 2f_2)}{3} \quad \chi_B = \frac{(4d_2 - f_2)}{3}
\]

- \(f_2 \) is a twist-4 contribution can be extracted from the first moment of \(g_1 \).

\[
\Gamma_1 = \int_0^1 g_1 dx = \mu_2 + \frac{M^2}{9Q^2} (a_2 + 4d_2 + 4f_2) + O\left(\frac{\mu^6}{Q^4}\right)
\]

Response of the color \(\mathbf{B} \) and \(\mathbf{E} \) field to the nucleon polarization.
Hint of a negative d_2^p, negative twist-3 at moderate $Q^2 \sim 3 \text{ GeV}^2$.

Armstrong et al., PRL 122, 022002 (2019)

Similar hint of negative twist-3 (dips below CN elastic) in d_2^p data was noted in SANE experiment.

Posik et al., 10.1103/PhysRevLett.113.022002 (d_2^n, color force extraction)
Flay et al., 10.1103/PhysRevD.94.05200 (Archival paper: g_1^n, g_2^n, d_2^n)
Parno, et al., 10.1016/j.physletb.2015.03.067 (A_1^n)
• x and Q^2 evolution of g_2 in the wide kinematic range ($0.23 < x < 0.85$) will give us knowledge about g_2 at higher x.

• Doubles number of precision data points for $g_2^n(x,Q^2)$ in DIS region.

• d_2 will be measured for the constant $Q^2 = 3,4,5,6 (GeV/c)^2$ for the very first time.
Precision g_2^n data set over broad range of x and Q^2.
Points are vertically offset from zero along lines that reflect different (roughly) constant Q^2 values from 2.5—7 GeV2.

Projected results for d_2^n at truly constant $Q^2 = 3, 4, 5, 6$ GeV2/c2.
• Hall C: Polarized 3He target, SHMS + HMS

• Beam energies:
 11 GeV (production), 2.2 GeV (calib.).

• Beam currents:
 30 μA (production), 40 μA (max., calib.).

• Each arm measures an absolute polarized cross section independent of the other arm (g_1, g_2).

<table>
<thead>
<tr>
<th>SHMS Production</th>
<th>HMS Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>Setting</td>
</tr>
<tr>
<td>A</td>
<td>A'</td>
</tr>
<tr>
<td>B</td>
<td>B'</td>
</tr>
<tr>
<td>C</td>
<td>C'</td>
</tr>
<tr>
<td>D</td>
<td>D'</td>
</tr>
</tbody>
</table>

• **SHMS** collects data at $\theta = 11°, 13.3°, 15.5°$ and $18.0°$ for 125 hrs each.

• **HMS** collects data at $\theta = 13.5°, 16.4°, 20.0°$ and $*25.0°$ for 125 hrs each.
E12-06-121: Run Plan

Nominal beam time allocation:

PAC 36 approved E12-06-121 for requested 700 PAC hours (29 PAC days)

- 5-pass beam (nominal 11.0 GeV/c) for ~ 676 PAC hours.
- 1-pass beam (nominal 2.2 GeV/c) for ~ 20 PAC hours + pass change → 5-pass.

1-pass running (calibration):

1-pass beam allocation: 3 calendar days

Nominal to do list:

- 8 hr Moller run
- 4 hr Optics at $p_0 = 2.2$ GeV/c
- Pressure curves for current cell
- Hydrogen elastics, delta QE meas
- 3He elastic data (E12-06-121A)
 (See Table)

<table>
<thead>
<tr>
<th>E_{beam} [GeV]</th>
<th>θ [°]</th>
<th>Q^2 [fm$^{-2}$]</th>
<th>Estimated Cross Section [mb/sr]</th>
<th>Rate [Hz]</th>
<th>Time [hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.216</td>
<td>k1</td>
<td>11</td>
<td>4.39×10^{-4}</td>
<td>723.69</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>k2</td>
<td>13</td>
<td>5.14×10^{-5}</td>
<td>84.89</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>k3</td>
<td>15</td>
<td>4.37×10^{-6}</td>
<td>7.21</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>k4</td>
<td>17</td>
<td>2.22×10^{-7}</td>
<td>0.37</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>k5</td>
<td>19</td>
<td>5.97×10^{-8}</td>
<td>0.10</td>
<td>11</td>
</tr>
<tr>
<td>HMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.216</td>
<td>k6</td>
<td>21</td>
<td>3.99×10^{-8}</td>
<td>0.12</td>
<td>24</td>
</tr>
</tbody>
</table>

Projection from E12-06-121A
E12-06-121: Run Plan

5-pass running (Production):

5-pass beam allocation: 54 calendar days (162 shifts)

For each kinematic pair \((X, X')\)

- Reference cell runs: \(^3\)He, \(N_2\)
- Empty cell run
- 8 hrs Optics (C-foil + Sieve)
- Positive polarity runs: 4 hrs optics, 4 hrs production
- Target NMR sweep (1–2 / shift)
- Production runs (~31 shifts)

Instrumentation / Calibration runs

- BPM calibration (2 hour)
- BCM calibration (2 hour)
- Beam energy (2 hour)

Summing Up:

Total 160 shifts (~40 shifts/setting)
- production + optics + pos. pol. Running - 35 shifts/setting
- Moller Runs (1/week) - 2 shifts/setting
- Allow ~10% overhead = ~3-4 shifts/setting

2 shifts for instrumentation and calibration runs.
E12-06-121A: Measurement of 3He Elastic Electromagnetic Form Factors

- Significant discrepancies between theoretical and experimental 3He FFs (particularly G_M).

- All higher Q^2 data are from unpolarized electron scattering results.
 - Rosenbluth separations are impossible in diffractive minima and global fits require FF parametrizations.

- **Double polarization asymmetry:**
 - Zeros of asymmetry are FF diffractive minima.
 - Constrain minima locations.
 - Hypothesis test theoretical models.

New independent tool to map FFs without the issues of unpolarized Rosenbluth measurements!
The experiment E12-06-121 (neutron g_2 and d_2) will run in 2020 right after E12-06-110 in Hall C.

High x and Q^2 evolution of g_2 and d_2 will be explored (large precision data).

It will be the first evaluation of d_2^n at truly constant Q^2 values.

This will give insight into quark-gluon correlations.

Several theoretical predictions (especially Lattice QCD) will be verified.
Supporting Documentations

- **Proposals**
 - https://hallcweb.jlab.org/wiki/images/1/1a/D2n_HallC_PAC36-update_v2.pdf

- **Polarized 3He Target**
 - https://hallcweb.jlab.org/wiki/index.php/Pol_He-3_Target Information
 - https://www.jlab.org/indico/event/351/session/1/contribution/9/material/slides/0.pdf

- **E06-014 (2009 d_2^n experiment) wiki**
 - https://hallaweb.jlab.org/wiki/index.php/Analysis_resources_for_d2n
Back-up Slides
Twist Expansion

- Quark electromagnetic current in forward Compton amplitude,
 \[T_{\mu\nu} = i \int d^4z \ e^{iz} < N \right| T \left(j_\mu(z)j_\nu(0) \right) \left| N \right> \]

- Operator product expansion (OPE) :
 \[j_\mu(z)j_\mu(0) = \sum C_{\mu_1...\mu_n} O_{d,n}^{\mu_1...\mu_n} \]
 \(O_{d,n}^{\mu_1...\mu_n} \) : Local quark gluon operators with mass dimension \(d \) and spin dimension \(n \)

- Dimension Analysis :
 \[C_{\mu_1...\mu_n} O_{d,n}^{\mu_1...\mu_n} \rightarrow \left(\frac{q_{\mu_1}}{Q} \right) ... \left(\frac{q_{\mu_n}}{Q} \right) Q^{2-d} M^{d-n-2} p^{\mu_1} ... p^{\mu_n} \]
 \[\rightarrow \frac{p.q}{Q^n} Q^{2-d} M^{d-n-2} \]
 \[\rightarrow \left(\frac{1}{x} \right)^n \left(\frac{Q}{M} \right)^{2+n-d} \]
 \[\rightarrow \left(\frac{1}{x} \right)^n \left(\frac{Q}{M} \right)^{2-t} \]
 Twist, \(t = d-n \)
Expected rates for HMS

| θ_0 [°] | E'_{cent} [GeV] | Q^2 [GeV2] | x | W [GeV] | e^- rate [Hz] | π^- rate [Hz] | $t||$ [hrs] | $t\perp$ [hrs] | $\Delta A||$ [\cdot10^{-4}] | $\Delta A\perp$ [\cdot10^{-4}] |
|---------------|-------------------|-----------------|-----|----------|----------------|-----------------|------------|------------|-----------------|-----------------|
| 13.5 | 4.305 | 2.617 | 0.208 | 3.293 | 954 | 765 | 8 | 117 | 2.0 | 0.6 |
| 16.4 | 5.088 | 4.555 | 0.410 | 2.727 | 218 | 15 | 12 | 113 | 3.9 | 1.2 |
| 20.0 | 4.000 | 5.31 | 0.404 | 2.951 | 76 | 66 | 10 | 115 | 6.0 | 1.8 |
| 25.0 | 2.500 | 5.15 | 0.323 | 3.417 | 20 | 84 | 13 | 112 | 10.7 | 3.1 |

- The rate table is taken from PAC-30 proposal.
- The uncertainties for A_\parallel and A_\perp are statistical only.
Kinematic bins and expected rates for SHMS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_0 = 11^\circ$</td>
<td>7.112</td>
<td>2.875</td>
<td>0.394</td>
<td>2.305</td>
<td>1058</td>
<td>11</td>
<td>12</td>
<td>113</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\quad E'_{cent} = 7.5$ GeV</td>
<td>7.709</td>
<td>3.116</td>
<td>0.504</td>
<td>1.988</td>
<td>708</td>
<td>3.1</td>
<td>12</td>
<td>113</td>
<td>2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>$\theta_0 = 13.3^\circ$</td>
<td>6.647</td>
<td>3.922</td>
<td>0.480</td>
<td>2.267</td>
<td>268</td>
<td>3.1</td>
<td>12</td>
<td>113</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>$\quad E'_{cent} = 7.0$ GeV</td>
<td>7.203</td>
<td>4.250</td>
<td>0.596</td>
<td>1.941</td>
<td>139</td>
<td>0.8</td>
<td>12</td>
<td>113</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>$\theta_0 = 15.5^\circ$</td>
<td>5.997</td>
<td>4.798</td>
<td>0.511</td>
<td>2.342</td>
<td>96</td>
<td>1.9</td>
<td>12</td>
<td>113</td>
<td>5.7</td>
<td>1.8</td>
</tr>
<tr>
<td>$\quad E'_{cent} = 6.3$ GeV</td>
<td>6.496</td>
<td>5.197</td>
<td>0.614</td>
<td>2.037</td>
<td>49</td>
<td>0.47</td>
<td>12</td>
<td>113</td>
<td>7.8</td>
<td>2.5</td>
</tr>
<tr>
<td>$\theta_0 = 18.0^\circ$</td>
<td>5.348</td>
<td>5.756</td>
<td>0.542</td>
<td>2.397</td>
<td>35</td>
<td>1.1</td>
<td>12</td>
<td>113</td>
<td>9.5</td>
<td>3.1</td>
</tr>
<tr>
<td>$\quad E'_{cent} = 5.6$ GeV</td>
<td>5.790</td>
<td>6.235</td>
<td>0.637</td>
<td>2.106</td>
<td>17</td>
<td>0.25</td>
<td>12</td>
<td>113</td>
<td>13</td>
<td>4.4</td>
</tr>
<tr>
<td>$\quad E'_{cent} = 8.0$ GeV</td>
<td>6.233</td>
<td>6.711</td>
<td>0.749</td>
<td>1.769</td>
<td>5.1</td>
<td>0.05</td>
<td>12</td>
<td>113</td>
<td>24</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Systematic Error Table

<table>
<thead>
<tr>
<th>Item description</th>
<th>Subitem description</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target polarization</td>
<td></td>
<td>1.5 %</td>
</tr>
<tr>
<td>Beam polarization</td>
<td></td>
<td>3 %</td>
</tr>
<tr>
<td>Asymmetry (raw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target spin direction (0.1°)</td>
<td>< 5 × 10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>Beam charge asymmetry</td>
<td>< 50 ppm</td>
</tr>
<tr>
<td>Cross section (raw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PID efficiency</td>
<td>< 1 %</td>
</tr>
<tr>
<td></td>
<td>Background rejection</td>
<td>≈ 1 %</td>
</tr>
<tr>
<td></td>
<td>Beam charge</td>
<td>< 1 %</td>
</tr>
<tr>
<td></td>
<td>Beam position</td>
<td>< 1 %</td>
</tr>
<tr>
<td></td>
<td>Acceptance cut</td>
<td>2-3 %</td>
</tr>
<tr>
<td></td>
<td>Target density</td>
<td>< 2 %</td>
</tr>
<tr>
<td></td>
<td>Nitrogen dilution</td>
<td>< 1 %</td>
</tr>
<tr>
<td></td>
<td>Dead time</td>
<td>< 1 %</td>
</tr>
<tr>
<td></td>
<td>Finite Acceptance cut</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Radiative corrections</td>
<td></td>
<td>≤ 5 %</td>
</tr>
<tr>
<td>From 3He to Neutron correction</td>
<td></td>
<td>5 %</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td></td>
<td>≤ 10 %</td>
</tr>
</tbody>
</table>

Estimate of contributions to d_2 from unmeasured region

\[
\int_{0.003}^{0.25} d_2 \, dx = 4.8 \times 10^{-4}
\]

Projected absolute statistical uncertainty on d_2

\[\Delta d_2 \approx 5 \times 10^{-4}\]

Projected absolute systematic uncertainty on d_2

(assuming $d_2 = 5 \times 10^{-3}$)

\[\Delta d_2 \approx 5 \times 10^{-4}\]
Neutron Asymmetries from ^3He

\[A_1^n = \frac{1}{p_n \, F_2^n \left(1 + \frac{0.056}{p_n} \right)} \left(A_1^{3\text{He}} - 2P_p \left(1 - \frac{0.014}{2P_p} \right) \frac{F_2^p}{F_2^{3\text{He}}} A_1^p \right) \]

\[A_2^n = \frac{1}{p_n \, F_2^n \left(1 + \frac{0.056}{p_n} \right)} \left(A_2^{3\text{He}} - 2P_p \left(1 - \frac{0.014}{2P_p} \right) \frac{F_2^p}{F_2^{3\text{He}}} A_2^p \right) \]

\[g_1^n = \frac{1}{p_n \, F_2^n \left(1 + \frac{0.056}{p_n} \right)} \left(g_1^{3\text{He}} - 2P_p \left(1 - \frac{0.014}{2P_p} \right) \frac{F_2^p}{F_2^{3\text{He}}} g_1^p \right) \]

\[g_2^n = \frac{1}{p_n \, F_2^n \left(1 + \frac{0.056}{p_n} \right)} \left(g_2^{3\text{He}} - 2P_p \left(1 - \frac{0.014}{2P_p} \right) \frac{F_2^p}{F_2^{3\text{He}}} g_2^p \right) \]

P_p, P_n : Effective proton and neutron polarizations in ^3He
E12-06-121A: Measurement of 3He Elastic Electromagnetic Form Factors

- Significant discrepancies between theoretical and experimental 3He FFs (particularly G_M).

- All higher Q^2 data are from unpolarized electron scattering results.

$$
\left(\frac{d \sigma}{d \Omega} \right)_{\text{exp}} = \left(\frac{d \sigma}{d \Omega} \right)_{\text{Mott}} \frac{1}{1+\tau} \left[G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2) \right]
$$

with $\epsilon = (1+2(1+\tau)\tan^2(\frac{\theta}{2}))^{-1}$ and $\tau = \frac{Q^2}{4M^2}$

- **Double polarization asymmetry:**

$$
A_{\text{phys}} = \frac{-2\sqrt{\tau(1+\tau)}\tan(\frac{\theta}{2})}{G_E^2 + \frac{\tau}{\epsilon} G_M^2} \left[\sin(\theta')\cos(\varphi') G_E G_M + \sqrt{\tau} \left[1 + (1+\tau)\tan^2(\frac{\theta}{2}) \right] \cos(\theta') G_M^2 \right]
$$

New independent tool to map FFs without the issues of unpolarized Rosenbluth measurements!
E12-06-121A: Proposed Procedure

Take data during d_2^n 1-pass (~24 PAC hours)

- Polarized 3He target (polarization > 50 %)

- HMS:
 - Positioned at single angle centered on the anticipated FF diffractive minima for the entirety of the run.

- SHMS:
 - Start at small angles and step up in Q^2 passing through the G_E minimum and approaching just below G_M's.
 - Constrains the minima locations while mapping the asymmetry.
3He Charge Form Factor

![Graph showing $|F_{ch}(Q^2)|$ vs. Q^2 (fm$^{-2}$)]

- Representative Fit Barcus 2019
- Uncertainty Band Barcus 2019
- Representative Fit Amroun et al. 1994
- Uncertainty Band Amroun et al. 1994
- CST Marcucci et al 2016
- χEFT 500 Marcucci et al 2016
- χEFT 600 Marcucci et al 2016
3He Magnetic Form Factor