Structure of TMD observables

Andrea Signori

University of Pavia and Jefferson Lab
A.I. for nuclear physics

March 4, 2020
From data to partons

Semi-Inclusive Deep-Inelastic Scattering (SIDIS): \(\ell(l) \, N(P) \rightarrow \ell(l') \, h(P_h) \, X \)
Semi-Inclusive Deep-Inelastic Scattering (SIDIS): $\ell(l) N(P) \rightarrow \ell(l') h(P_h) X$

Quark tomography of the nucleon
From data to partons

Semi-Inclusive Deep-Inelastic Scattering (SIDIS): $\ell(l) N(P) \rightarrow \ell(l') h(P_h) X$

Quark tomography of the nucleon

How to access hadron tomography from experimental data?
Kinematic coverage for SIDIS

credit: C. Weiss
Kinematic coverage for SIDIS

credit: C. Weiss

JLab 12: valence structure
Kinematic coverage for SIDIS

- JLab 12: valence structure
- COMPASS: valence/sea quarks
Kinematic coverage for SIDIS

- JLab 12: valence structure
- COMPASS: valence/sea quarks
- EIC: sea quarks and (radiative) glue
Kinematic coverage for SIDIS

The Electron-Ion Collider (EIC) will greatly *extend the kinematic reach of existing facilities for SIDIS*

- **JLab 12**: valence structure
- **COMPASS**: valence/sea quarks
- **EIC**: sea quarks and (radiative) glue
SIDIS: ingredients

credit: A. Bacchetta
SIDIS: ingredients

Ingredients to build the cross section:

- available four-vectors (momenta for leptons, hadrons, photon, spin of target hadron)
SIDIS: ingredients

Ingredients to build the cross section:

- available four-vectors (momenta for leptons, hadrons, photon, spin of target hadron)
- symmetries of the theory
SIDIS: Structure Functions

\[
\frac{d\sigma}{dx\,dy\,dz\,d\psi\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \right.
\]

\[
F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \quad \rightarrow \text{4D quantities}
\]

\[
+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos(\phi_h) F_{UU}^{\cos\phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos^2\phi_h} \quad \rightarrow \text{unpolarized}
\]
$$\frac{d\sigma}{dx \, dy \, dz \, d\psi \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x y Q^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \begin{array}{l}

F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \quad \rightarrow \text{4D quantities} \\
+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos(\phi_h) F_{UU}^{\cos\phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos^2\phi_h} \quad \rightarrow \text{unpolarized} \\
+ \lambda_e \left[\ldots 1 \text{SF} \ldots \right] \quad \rightarrow \text{polarized terms} \\
+ S_{\parallel} \left[\ldots 2 \text{SFs} \ldots \right] + \\
+ S_{\parallel} \lambda_e \left[\ldots 2 \text{SFs} \ldots \right] \\
+ S_{\perp} \left[\ldots 6 \text{SFs} \ldots \right] \\
+ S_{\perp} \lambda_e \left[\ldots 3 \text{SFs} \ldots \right] \end{array} \right\}$$
SIDIS: Structure Functions

\[
\frac{d\sigma}{dx\ dy\ dz\ d\psi\ d\phi_h\ dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \right.
\]

\[
F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \rightarrow 4D \text{ quantities}
\]

\[
+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos(\phi_h) F_{UU}^{\cos \phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} \rightarrow \text{unpolarized}
\]

\[
+ \lambda_e \left[\ldots 1 \text{ SF} \ldots \right] \rightarrow \text{polarized terms}
\]

\[
+ S_{||} \left[\ldots 2 \text{ SFs} \ldots \right] +
\]

\[
+ S_{||} \lambda_e \left[\ldots 2 \text{ SFs} \ldots \right]
\]

\[
+ S_{\perp} \left[\ldots 6 \text{ SFs} \ldots \right]
\]

\[
+ S_{\perp} \lambda_e \left[\ldots 3 \text{ SFs} \ldots \right] \left\} \right.
\]

18 structure functions in total!
SIDIS: Structure Functions

\[
\frac{d\sigma}{dx \, dy \, dz \, d\psi \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x y Q^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x} \right)
\]

\[
F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \rightarrow 4D \text{ quantities}
\]

\[
+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos(\phi_h) F_{UU}^{\cos\phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos2\phi_h} \rightarrow \text{unpolarized}
\]

\[
+ \lambda_e \left[\ldots 1 \text{ SF} \ldots \right] \rightarrow \text{polarized terms}
\]

\[
+ S_{\parallel} \left[\ldots 2 \text{ SFs} \ldots \right] +
\]

\[
+ S_{\parallel} \lambda_e \left[\ldots 2 \text{ SFs} \ldots \right]
\]

\[
+ S_{\perp} \left[\ldots 6 \text{ SFs} \ldots \right]
\]

\[
+ S_{\perp} \lambda_e \left[\ldots 3 \text{ SFs} \ldots \right]
\]

18 structure functions in total!

Experimental data for all of them
SIDIS: Structure Functions

\[
\frac{d\sigma}{dx \, dy \, dz \, d\psi \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x y Q^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \{ \\
F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \rightarrow 4D \text{ quantities} \\
+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos(\phi_h) F_{UU}^{\cos\phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos2\phi_h} \rightarrow \text{unpolarized} \\
+ \lambda_e \left[\ldots 1 \text{ SF} \ldots \right] \rightarrow \text{polarized terms} \\
+ S_{||} \left[\ldots 2 \text{ SFs} \ldots \right] + \\
+ S_{||} \lambda_e \left[\ldots 2 \text{ SFs} \ldots \right] \\
+ S_{\perp} \left[\ldots 6 \text{ SFs} \ldots \right] \\
+ S_{\perp} \lambda_e \left[\ldots 3 \text{ SFs} \ldots \right] \} \]

18 structure functions in total!
Experimental data for all of them
Theory? Connection to parton physics
Diagrammatic approach

Tree level connection between structure functions and partonic quantities
SFs \rightarrow tree-level convolutions of (un)polarized TMD PDFs and TMD FFs

$$F_{\ldots} \rightarrow x \sum_{a,f,D} e_a^2 \int d^2p_T d^2k_T \delta^{(2)}(p_T - k_T - P_{h\perp}/z) f_{a/N}^{a/N}(x,p_T^2) D^{a-h}(z,k_T^2)$$

hep-ph/0611265
Diagrammatic approach

Tree level connection between structure functions and partonic quantities

SFs \rightarrow tree-level convolutions of *(un)polarized* TMD PDFs and TMD FFs

$$F... \rightarrow x \sum_{a,f,D} e_a^2 \int d^2 p_T d^2 k_T \delta^{(2)}(p_T - k_T - P_{h \perp} / z) f^{a/N}(x, p_T^2) D^{a \rightarrow h}(z, k_T^2)$$

PDFs: parton distribution functions - hadron \rightarrow parton transition
Diagrammatic approach

Tree level connection between structure functions and partonic quantities

SFs \rightarrow tree-level convolutions of *(un)polarized* TMD PDFs and TMD FFs

\[
F_{\ldots} \rightarrow x \sum_{a,f,D} e_a^2 \int d^2 p_T d^2 k_T \delta^{(2)}(p_T - k_T - P_{h\perp}/z) f_{a/N}^{a/N}(x, p_T^2) D^{a\rightarrow h}(z, k_T^2)
\]

PDFs: parton distribution functions - hadron \rightarrow parton transition

FFs: parton fragmentation functions - hadron \leftarrow parton transition

hep-ph/0611265
Diagrammatic approach

Tree level connection between structure functions and partonic quantities

SFs \rightarrow tree-level convolutions of *(un)polarized* TMD PDFs and TMD FFs

\[
F_{\ldots} \rightarrow x \sum_{a,f,D} e_a^2 \int d^2 p_T d^2 k_T \delta^{(2)}(p_T - k_T - P_{h\perp}/z) f^{a/N}(x, p_T^2) D^{a\rightarrow h}(z, k_T^2)
\]

PDFs: parton distribution functions - hadron \rightarrow parton transition
FFs: parton fragmentation functions - hadron \leftarrow parton transition

Separation of hard and soft physics \rightarrow factorization (complete only for $F_{UU,T}$)

hep-ph/0611265
TMD factorization

Proper separation of perturbative and non-perturbative (= structure) physics

\[F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a H_{UU,T}^a(Q^2) \]

\[\times x \int d^2 p_T d^2 k_T \delta^{(2)}(z k_T + P - P_{hT}) f^{a/N}_1(x, p_T^2, Q^2) D^{a\rightarrow h}_1(z, k_T^2, Q^2) \]

picture from Collins pQCD book
TMD factorization

Proper separation of perturbative and non-perturbative (= structure) physics

\[F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a \mathcal{H}_{UU,T}^a(Q^2) \]

\[\times x \int d^2 p_T d^2 k_T \delta^{(2)}(zk_{\perp} + P_{\perp} - P_{hT}) f_1^{a/N}(x, p_T^2, Q^2) D_1^{a\rightarrow h}(z, k_T^2, Q^2) \]

\[+ Y_{UU,T}(x, z, P_{hT}^2, Q^2) \]

picture from Collins pQCD book
TMD factorization

Proper separation of perturbative and non-perturbative (\(=\) structure) physics

\[
F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a H_{UU,T}^a(Q^2)
\]

\[
\times x \int d^2p_T d^2k_T \delta^{(2)}(zk_\perp + p_\perp - P_{hT}) f_1^a/N(x, p_T^2, Q^2) D_{1\rightarrow h}^a(z, k_T^2, Q^2)
\]

\[
+ Y_{UU,T}(x, z, P_{hT}^2, Q^2) + O(M^2/Q^2)
\]

picture from Collins pQCD book
TMD factorization

Proper separation of perturbative and non-perturbative (= structure) physics

\[F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a \mathcal{H}_{UU,T}^a(Q^2) \]

\[\times x \int d^2p_T d^2k_T \delta^{(2)}(zk_\perp + P_\perp - P_{hT}) f_1^{a/N}(x, p_T^2, Q^2) D_{1 \rightarrow h}^a(z, k_T^2, Q^2) \]

\[+ Y_{UU,T}(x, z, P_{hT}^2, Q^2) + O(M^2/Q^2) \approx \text{low transverse momentum} \]
TMD factorization

Proper separation of perturbative and non-perturbative (= structure) physics

\[F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a H_{UU,T}^a(Q^2) \]

\[\times x \int d^2 p_T d^2 k_T \delta^{(2)}(zk_\perp + P_\perp - P_{hT}) f_1^{a/N}(x, p_T^2, Q^2) D_1^{a\rightarrow h}(z, k_T^2, Q^2) \]

\[+ Y_{UU,T}(x, z, P_{hT}^2, Q^2) + \mathcal{O}(M^2/Q^2) \approx \text{low transverse momentum} \]

\[\approx \sum_a H_{UU,T}^a(Q^2) \int_0^\infty db_T b_T J_0(b_T|P_{hT}|/z) \tilde{f}_1^{a/N}(x, b_T^2, Q^2) \tilde{D}_1^{a\rightarrow h}(z, b_T^2, Q^2) \]

picture from Collins pQCD book
TMD factorization

Proper separation of perturbative and non-perturbative (= structure) physics

\[F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a \mathcal{H}_UU,T^a(Q^2) \]

\[\times x \int d^2 p_T \, d^2 k_T \, \delta^{(2)}(zk_\perp + P_\perp - P_{hT}) \, f_{1/N}^{a/N}(x, p_T^2, Q^2) \, D_{1}^{a\rightarrow h}(z, k_T^2, Q^2) \]

\[+ Y_{UU,T}(x, z, P_{hT}^2, Q^2) + \mathcal{O}(M^2/Q^2) \approx \text{low transverse momentum} \]

\[\approx \sum_a \mathcal{H}_UU,T^a(Q^2) \int_0^\infty \! db_T \, b_T \, J_0(b_T |P_{hT}|/z) \, \tilde{f}_{1/N}^{a/N}(x, b_T^2, Q^2) \, \tilde{D}_{1}^{a\rightarrow h}(z, b_T^2, Q^2) \]

- \(\mathcal{H} \): perturbative
- \(\tilde{f}_1, \tilde{D}_1 \): perturbative and non-perturbative

picture from Collins pQCD book
Structure of TMDs

Fourier transform of a TMD distribution (b_T space):

$$\tilde{f}_1^a (x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a (x, b_T^2; \mu_i, \zeta_i)$$

$$\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\alpha_s(\mu), \frac{\zeta_f}{\mu^2} \right] \right\}$$

$$\times \left(\frac{\zeta_f}{\zeta_i} \right)^{-K(b_T;\mu_i)}$$

\[\rightarrow \mu \text{ evolution} \]

\[\rightarrow \zeta \text{ evolution} \]
Fourier transform of a TMD distribution (b_T space):

$$\tilde{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i)$$

$$\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\alpha_s(\mu), \frac{\zeta_f}{\mu^2} \right] \right\} \rightarrow \mu \text{ evolution}$$

$$\times \left(\frac{\zeta_f}{\zeta_i} \right)^{-K(b_T; \mu_i)} \rightarrow \zeta \text{ evolution}$$

The input TMD: expanded at low b_T on the collinear distributions:

$$\tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) = \sum_b C_{a/b}(x, b_T^2; \mu_i, \zeta_i) \otimes f_1^b(z, \mu_i)$$
Structure of TMDs

Fourier transform of a TMD distribution \((b_T \text{ space})\):

\[
\tilde{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i)
\]

\[
\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\alpha_s(\mu), \frac{\zeta_f}{\mu^2} \right] \right\} \rightarrow \mu \text{ evolution}
\]

\[
\times \left(\frac{\zeta_f}{\zeta_i} \right)^{-K(b_T; \mu_i)} \rightarrow \zeta \text{ evolution}
\]

The input TMD: expanded at low \(b_T\) on the collinear distributions:

\[
\tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) = \sum_b C_{a/b}(x, b_T^2; \mu_i, \zeta_i) \otimes f_1^b(z, \mu_i)
\]

\(\gamma_F, K, C_{a/b} : \text{calculable in perturbation theory}\)
Structure of TMDs

Fourier transform of a TMD distribution (b_T space):

$$\tilde{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i)$$

$$\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\frac{\alpha_s(\mu)}{\mu^2}, \frac{\zeta_f}{\mu^2} \right] \right\}$$

$$\times \left(\frac{\zeta_f}{\zeta_i} \right)^{K(b_T;\mu_i) + g_K(b_T;\{\lambda\})}$$

$\rightarrow \mu$ evolution

$\rightarrow \zeta$ evolution
Fourier transform of a TMD distribution (b_T space):
\[
\tilde{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) \\
\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\frac{\alpha_s(\mu)}{\mu} \frac{\zeta_f}{\mu^2} \right] \right\} \\
\times \left(\frac{\zeta_f}{\zeta_i} \right)^{-K(b_T; \mu_i) + g_K(b_T; \lambda)} \\
\rightarrow \mu \text{ evolution}
\]

The input TMD: expanded at low b_T on the collinear distributions:
\[
\tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) = \sum_b C_{a/b}(x, b_T^2; \mu_i, \zeta_i) \otimes f_1^b(z, \mu_i) F_{NP}^a(z, b_T^2; \lambda)
\]
Structure of TMDs

Fourier transform of a TMD distribution (b_T space):

$$
\tilde{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) \\
\times \exp \left\{ \int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F \left[\alpha_s(\mu), \frac{\zeta_f}{\mu^2} \right] \right\} \\
\times \left(\frac{\zeta_f}{\zeta_i} \right)^{-K(b_T; \mu_i) + g_K(b_T; \{\lambda\})}
\rightarrow \mu \text{ evolution}
\rightarrow \zeta \text{ evolution}
$$

The input TMD: expanded at low b_T on the collinear distributions:

$$
\tilde{f}_1^a(x, b_T^2; \mu_i, \zeta_i) = \sum_b C_{a/b}(x, b_T^2; \mu_i, \zeta_i) \otimes f_1^b(z, \mu_i) F_{NP}^a(z, b_T^2; \{\lambda\})
$$

{f_1, F_{NP}, g_K: non-perturbative contributions - fits to data}
Practical challenges

$F_{UU,T}$ - for every experimental bin (e.g. $O(\#) \sim 10^{4,5}$):

- integrals to match TMDs to PDFs in b_T space, summed over flavors
Practical challenges

$F_{UU,T}$ - for every experimental bin (e.g. $\mathcal{O}(\#) \sim 10^{4,5}$):

- integrals to match TMDs to PDFs in b_T space, summed over flavors
- integral over b_T (convolution of partonic momenta), summed over flavors
Practical challenges

$F_{UU,T}$ - for every experimental bin (e.g. $\mathcal{O}(#) \sim 10^{4,5}$):

- Integrals to match TMDs to PDFs in b_T space, summed over flavors
- Integral over b_T (convolution of partonic momenta), summed over flavors
- Kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \rightarrow potentially many parameters
Practical challenges

\(F_{UU,T} \) - for every experimental bin (e.g. \(\mathcal{O}(\#) \sim 10^{4,5} \)):

- Integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- Integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- Kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \(\rightarrow \) potentially many parameters
- Minimization in multidimensional parameter space
Practical challenges

\[F_{UU,T} \] - for every experimental bin (e.g. \(O(\#) \sim 10^{4,5} \)):

- integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \(\rightarrow \) potentially many parameters
- minimization in multidimensional parameter space
- multidimensional data sets
Practical challenges

$F_{UU,T}$ - for every experimental bin (e.g. $\mathcal{O}(\#) \sim 10^{4,5}$):

▶ integrals to match TMDs to PDFs in b_T space, summed over flavors
▶ integral over b_T (convolution of partonic momenta), summed over flavors
▶ kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs → potentially many parameters
▶ minimization in multidimensional parameter space
▶ multidimensional data sets
▶ …
Practical challenges

\(F_{UU,T} \) - for every experimental bin (e.g. \(\mathcal{O}(\#) \sim 10^{4,5} \)):

- integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \(\rightarrow \) potentially many parameters
- minimization in multidimensional parameter space
- multidimensional data sets
- ...

Conceptual challenges:

- separation among fragmentation regions
Practical challenges

\(F_{UU,T} \) - for every experimental bin (e.g. \(\mathcal{O}(\#) \sim 10^{4,5} \)):

- integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \(\rightarrow \) potentially many parameters
- minimization in multidimensional parameter space
- multidimensional data sets
- \(\ldots \)

Conceptual challenges:

- separation among fragmentation regions
- separation between “low” and “large” transverse momentum regions
Practical challenges

\(F_{\text{UU,T}} \) - for every experimental bin (e.g. \(\mathcal{O}(\#) \sim 10^{4,5} \)):

- integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs \(\rightarrow \) potentially many parameters
- minimization in multidimensional parameter space
- multidimensional data sets
- ...

Conceptual challenges:

- separation among fragmentation regions
- separation between “low” and “large” transverse momentum regions
- consolidate the formalism for the polarized and sub-leading twist SFs
Practical challenges

\(F_{UU,T} \) - for every experimental bin (e.g. \(\mathcal{O}(\#) \sim 10^{4,5} \)):

- integrals to match TMDs to PDFs in \(b_T \) space, summed over flavors
- integral over \(b_T \) (convolution of partonic momenta), summed over flavors
- kinematic and flavor dependence of the non-perturbative models for collinear and TMD PDFs and FFs → potentially many parameters
- minimization in multidimensional parameter space
- multidimensional data sets
- ...

Conceptual challenges:

- separation among fragmentation regions
- separation between “low” and “large” transverse momentum regions
- consolidate the formalism for the polarized and sub-leading twist SFs
- ...

$f_{1}^{a/h}(x, k_{T}^{2}, Q)$: probability of finding quark/gluon with a fraction x of the hadron’s momentum and a transverse momentum k_T at the energy/resolution scale Q.

Hadron structure in terms of quarks/ gluons in 3D momentum space (from PV19 fit - 1912.07550)
SIDIS: convolution of hadron structure and hadronization

\[F_{UU,T} \approx \sum_a \mathcal{H}_{UU,T}^a \int_0^\infty db_T b_T J_0(b_T | P_{hT} | / z) \tilde{f}_1^a/N(x, b_T^2, Q^2) \tilde{D}_1^{a \rightarrow h}(z, b_T^2, Q^2) \]

Extractions of TMD PDFs and FFs (PV17 fit: 1703.10157)

\[\langle k_T^2 \rangle \text{ and } \langle P_T^2 \rangle \]

mapping quarks in 3D momentum space
Backup
Twist-2 transverse momentum dependent PDFs for a quark in a spin 1/2 hadron

<table>
<thead>
<tr>
<th>nucleon pol.</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td></td>
<td>h_1^+</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>g_{1L}</td>
<td>h_{1L}^+</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^+</td>
<td>g_{1T}</td>
<td>h_1, h_{1T}^+</td>
</tr>
</tbody>
</table>
Twist-2 transverse momentum dependent PDFs for a quark in a spin 1/2 hadron

<table>
<thead>
<tr>
<th>nucleon pol.</th>
<th>quark pol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>U</td>
<td>f_1</td>
</tr>
<tr>
<td>L</td>
<td>g_{1L}</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^\perp</td>
</tr>
</tbody>
</table>

f_{1T}^\perp and h_1^+ are time-reversal odd and are process dependent.
Twist 2 quark TMD PDFs

Twist-2 transverse momentum dependent PDFs for a quark in a spin 1/2 hadron

<table>
<thead>
<tr>
<th>nucleon pol.</th>
<th>quark pol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>U</td>
<td>f_1</td>
</tr>
<tr>
<td>L</td>
<td>g_{1L}</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^\perp</td>
</tr>
</tbody>
</table>

f_{1T}^\perp and h_1^+ are time-reversal odd and are process dependent.

The experimental confirmation of this calculable process dependence (\(=\) sign flip between Semi-Inclusive DIS and Drell-Yan) is a fundamental test for the symmetries of QCD.
Twist 3 quark TMD PDFs

Twist-3 transverse momentum dependent PDFs for a quark in a spin 1/2 hadron

<table>
<thead>
<tr>
<th>nucleon pol.</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f^\perp</td>
<td>g^\perp</td>
<td>h, e</td>
</tr>
<tr>
<td>L</td>
<td>f_L^\perp</td>
<td>g_L^\perp</td>
<td>h_L, e_L</td>
</tr>
<tr>
<td>T</td>
<td>f_T, f_T^\perp</td>
<td>g_T, g_T^\perp</td>
<td>$h_T, h_T^\perp, e_T, e_T^\perp$</td>
</tr>
</tbody>
</table>
Twist 3 quark TMD PDFs

Twist-3 transverse momentum dependent PDFs for a quark in a spin 1/2 hadron

<table>
<thead>
<tr>
<th>nucleon pol.</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f^\perp</td>
<td>g^\perp</td>
<td>h, e</td>
</tr>
<tr>
<td>L</td>
<td>f_L^\perp</td>
<td>g_L^\perp</td>
<td>h_L, e_L</td>
</tr>
<tr>
<td>T</td>
<td>f_T, f_T^\perp</td>
<td>g_T, g_T^\perp</td>
<td>$h_T, h_T^\perp, e_T, e_T^\perp$</td>
</tr>
</tbody>
</table>

Functions in black survive transverse momentum integration. Functions in red are T-odd. A similar decomposition at twist 2 and 3 exists also for FFs.