Machine Learning in High Energy Physics

Mark Neubauer
University of Illinois at Urbana-Champaign

AI for Nuclear Physics Workshop
JLab / March 5, 2020
Preliminaries

- I will not attempt to summarize all of the past and ongoing work on using ML for High Energy Physics
- I will focus primarily on the experiments at CERN’s Large Hadron Collider (LHC)
 - They have big data challenges which ML applications can help to address
- I will try to emphasize ML aspects that I view as most forward-facing toward the next decade

Terminology

- Artificial Intelligence (AI)
 - General term, since 1950s
- Machine Learning (ML)
 - BDTs, shallow neural networks, since 1990s
- Deep Learning (DL)
 - Neural networks with many layers, unprocessed inputs, since 2010

★ Systems that make decisions usually requiring a human level of expertise, possessing the qualities of intentionality, intelligence and adaptability
CERN's Large Hadron Collider (LHC)
LHC Experiments
CERN’s Large Hadron Collider (LHC)

- At the LHC, counter-rotating proton beams cross with a frequency of 40 MHz.
- The beams consist of ~2500 bunches of O(100 billion) protons per bunch that are steered into one another.
 → Each pp collision produces of O(10^3) particles!
- These beams are squeezed to increase the collision rate and therefore increase the chance of producing interesting but rare physics for discovery science.
 → comes with a price: multiple pp interactions per bunch crossing ("pile-up") that can obscure the most interesting (hard scattering) physics.
Standard Model Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} =$ 5,7,8,13 TeV

- **LHC pp $\sqrt{s} = 5$ TeV**
 - Theory
 - Data 0.025 fb$^{-1}$

- **LHC pp $\sqrt{s} = 7$ TeV**
 - Data 4.5 – 4.9 fb$^{-1}$

- **LHC pp $\sqrt{s} = 8$ TeV**
 - Data 20.2 – 20.3 fb$^{-1}$

- **LHC pp $\sqrt{s} = 13$ TeV**
 - Data 3.2 – 79.8 fb$^{-1}$
LHC Schedule

Higgs boson discovery

Start of HL-LHC physics
Higher luminosity running leads to increase size and complexity collision data → a serious challenge for detector triggering and event reconstruction in the experiments during HL-LHC ($\mu \sim 200$) running!
Typical LHC data flow

1. **Collisions**

2. **Level 1 Trigger**
 - 99.75% of events rejected
 - 100 kHz

3. **High Level Trigger**
 - 99% of events rejected

4. **Offline Reconstruction @ Tier-0**
 - 1 kHz
 - 1 MB / event

5. **40 MHz**
 - O(100 TB/s)

Lots of human & artificial intelligence steps here!

Higgs Discovery!
Typical LHC data flow

- **Level 1 Trigger**: 99.75% of events rejected!
- **High Level Trigger**: 99% of events rejected!

Lots of human & artificial intelligence steps here!

99.9975% of collision events are rejected while retaining those essential for our science!

→ Must continually choose a winner out of 40,000 (avg.) very wisely and must choose it very fast!

Higgs Discovery!
LHC Experiments
LHC Experiments generate ~50 PB/year of science data (during Run 2)
The HL-LHC Challenge

ATLAS & CMS will record ~10 times as much data from ~100 times as many collisions as were used to discover the Higgs boson (and at twice the energy).

The HL-LHC will produce exabytes of science data per year, with increased complexity: an average of 200 overlapping pp collisions per event.

Several large US software and computing projects have been initiated to help address these challenges, including:

Institute for Research & Innovation in Software for HEP (IRIS-HEP)
- IRIS-HEP begin in September 2018 and resulted from a 2-year community-wide effort involving 18 workshops and 8 position papers, most notably a HEP Software Foundation Community White Paper and a Strategic Plan.

HEP Center for Computational Excellence (HEP-CCE)
- A cross-cutting initiative to promote excellence in high performance computing (HPC) including data-intensive applications, scientific simulations, and data movement and storage.

Many HEP problems can be recast as ML problems → ML is rapidly playing a key role in addressing HL-LHC challenges & enabling new science capabilities!
E.g. Event Classification

- Observation of electroweak single top quark production in association with a Z boson and a quark \((pp \rightarrow tZq)\) by the ATLAS Collaboration

- Sensitive probe of new physics (e.g. FCNCs)

- Trained an artificial neural network (ANN) to classify \(tZq\) events using simulated data for improved signal and background separation
 - ANN performance validated by studying events with similar signatures (control regions) that are dominated by background processes

\[
\begin{align*}
\text{ATLAS} \\
i_s = 13 \text{ TeV}, 139 \text{ fb}^{-1} \\
\text{SR 2j1b} \\
\text{Post-Fit}
\end{align*}
\]
E.g. “Object” (t-quark) Classification

Comparison of many “state-of-the-art” ML-based top-quark taggers

○ Image-based
 - CNN
 - ResNeXt

○ 4-vector-based
 - TopoDNN
 - Multi-Body N-Subjettiness (Nsub)
 - TreeNiN
 - Particle-level CNN (P-CNN)
 - ParticleNet

○ Theory-inspired taggers
 - Lorentz-boost network (LBN)
 - Lorentz-Layer (LoLa)
 - Latent Dirichlet Allocation (LDA)
 - Energy Flow Polynomials (EFP)
 - Energy Flow Network (EFN)
 - Particle Flow Network (PFN)
E.g. ML-based Fast Shower Simulation

ATLAS: Simulation is the largest use of distributed computing resources and ~80% of that is calorimeter simulation

Two of the most promising ML-based approaches studied thus far:

Variational Autoencoder (VAE)
- Encode representation of Geant4 showers into latent space
- Use decoder to generate new showers

Generative Adversarial Networks (GAN)
- Train a generator for new showers
- Critic: Difference between generated shower and Geant 4
- Second Critic for total shower energy
ATLAS: Simulation is the largest use of distributed computing resources and ~80% of that is calorimeter simulation.

Two of the most promising ML-based approaches studied thus far:

Variational Autoencoder (VAE)
- Encode representation of Geant4 showers into latent space
- Use decoder to generate new showers

Generative Adversarial Networks (GAN)
- Train a generator for new showers
- Critic: Difference between generated shower and Geant4
- Second Critic for total shower energy
E.g. NN Stability / Decorrelation

- Goal: Stabilize discriminator against systematic uncertainty or other effect
- Adversarial training (e.g. decorrelate jet mass)

\[
L_{\text{tagger}} = L_{\text{classification}} - \lambda L_{\text{adversary}}
\]
E.g. Triggering with Autoencoders

- Without algorithmic or other (e.g. hardware) improvements, trigger requirements become more restrictive at the HL-LHC to fit into computing constraints → decreasing sensitivity to some beyond-the-SM (BSM) signatures
- Unsupervised learning can be used to train the trigger to identify BSM physics as anomalies in the data stream

Autoencoder (AE):

Since the compression capability of an AE network does not generalize well to other data, we can use the loss (encoder-decoder distance) to identify events not representative of the training data (i.e. anomalies)

arXiv:1811.10276
E.g. Triggering with Autoencoders

- SM cocktail dataset as collected with isolated single lepton trigger
- 21 input quantities: lepton momentum, isolation, charge, number of jets, missing transverse energy, etc... → very generic and intended to be BSM signal agnostic
- Triggered events could be written to a special “anomaly” data stream for additional analysis

5.4x10^-6 of the SM events are retained
Data relationships in many real-world applications can be naturally represented by graphs.

Graph Neural Networks (GNNs) are deep learning based methods that capture dependencies on graphs via message passing between the nodes of graphs.

GNNs are well-suited to pattern recognition—a key element of reconstructing charged particles in tracking detectors.

Work on GNN approaches to tracking and calorimetry initiated by HEP.TrkX and is being driven by the EXA.TrkX group (see their 2019 NeurIPS paper). Several members of IRIS-HEP are collaborating on this effort.

Detector measurements are represented as graph nodes which are associated with one another by learned graph edges that represent the particle tracks.
E.g. Tracking w/ Graph Neural Networks

- We use the TrackML Challenge Data for training & evaluation
- Preprocessing for GNN models use HEP.TrkX libraries with a truth particle $p_T > 2$ GeV cut

- GNN-based inference can be implemented on FPGAs to accelerate computationally expensive parts of the event reconstruction such as calorimetry and tracking in the ATLAS or CMS High-Level (software) trigger
E.g. Real-time ML-based Inference

Absorbs 100s TB/s
Trigger decision to be made in $O(\mu s)$
Latencies require all-FPGA design

High-Level Trigger
Computing farm for detailed analysis of the full event
Latency $O(100 \text{ ms})$
E.g. Real-time ML-based Inference

High-Level Trigger
Computing farm for detailed analysis of the full event
Latency $O(100 \text{ ms})$

Deep neural network based on high-level features for b-quark jets identification (offline & HLT)

Offline reconstruction @ Tier 0

We are already applying Deep Learning here!
E.g. Real-time ML-based Inference

1 ns 1 μs 100 ms 1 s

40 MHz 100 KHz 1 kHz

Level 1 trigger

Absorbs 100s TB/s
Trigger decision to be made in $O(\mu s)$
Latencies require all-FPGA design

Can we do real-time AI in $O(\mu s)$ on one FPGA?

High-Level Trigger

Computing farm for detailed analysis of the full event
Latency $O(100 \text{ ms})$

Offline reconstruction @ Tier 0

We are already applying Deep Learning here!
E.g. Real-time ML-based Inference

high level synthesis for machine learning

Read our White Paper on how accelerated ML can be applied across many fields of fundamental physics!

http://fastmachinelearning.org
E.g. Real-time ML-based Inference

Workshop on Sept 10-11, 2019 @ Fermilab

Hosted at the Fermilab LPC and co-located with the FastML “developer bootcamp” which held tutorials and hackathon (195 registered participants!)

Read our [White Paper](https://example.com/white-paper) on how accelerated ML can be applied across many fields of fundamental physics!
Looking forward...

- Many HEP problems can be recast as ML problems. ML is rapidly playing a key role in addressing HL-LHC challenges & enabling new science capabilities.

- Some key areas of ML for HEP going forward as I see it (some topics were covered in this talk, but many not):
 - Fast (accelerated, “real-time”) ML training and inference
 - Adversarial training, data augmentation
 - Supervised learning with raw detector information (“whole-event ML”)
 - Unsupervised learning, anomaly detection
 - Weakly supervised learning (e.g. CWoLa, Tag ‘N Track)
 - Reinforcement learning
 - Deep Generative Models for Fast Detector Simulation
 - Uncertainty quantification
 - Graph-based learning
 - Training and Workforce development
 - Physics-inspired -driven network architectures
Collision event recorded by the CMS detector during a high luminosity running of the LHC with $\langle \mu \rangle \sim 100$

Bender: Come on, Fry. I really wanna see it [the year 2000]. You know how I yearn for a simpler time... a time of barn dances and buggy rides before life was cheapened by heartless, high-tech machines.

Leela: But, Bender, you are a—

Bender: [dissmissive] blah blah blah blah blah ...

Thanks!