Next generation of QCD global analysis tools

Nobuo Sato
Jefferson Lab

A.I. for Nuclear Physics Workshop
Jefferson Lab, 2020
Current paradigm

- Global analysis uses Bayesian regression

- It is done via posterior sampling

\[\rho(\alpha|\text{data}) = \mathcal{L}(\alpha, \text{data})\pi(\alpha) \]

- \(\alpha\) are the “shape” parameters for QCF
Why do we use posterior sampling?
Why do we use posterior sampling?

We know how to go from \(\alpha \) to cross sections e.g.

\[
\frac{d\sigma}{dx dQ^2} = \sum_q \int_x^1 \frac{d\xi}{\xi} H(\xi) f_q \left(\frac{x}{\xi}, \mu; \alpha \right)
\]
Why do we use posterior sampling?

- We know how to go from α to cross sections e.g.
 $$
 \frac{d\sigma}{dxdQ^2} = \sum_q \int_x^1 \frac{d\xi}{\xi} H(\xi) f_q \left(\frac{x}{\xi}, \mu; \alpha \right)
 $$

- We DON’T have the inverse function to go from cross sections to α
Consider a simple scenario in 1D
Consider a simple scenario in 1D

- Suppose we know \(f(x) \) but not its inverse.
Consider a simple scenario in 1D

- Suppose we know \(f(x) \) but not its inverse

- We can flip the graph to get the inverse

\[f(x) \]
The key idea

We can parametrize the inverse given measurements of f we can infer x with the inverse.
The key idea

- We can parametrize the inverse

Given measurements of f, we can infer x with the inverse.
The key idea

- We can parametrize the inverse
- Given measurements of \(f \) we can infer \(x \) with the inverse
The inverse mapper for global analysis

\[\sigma_{P}^{-1} \]

\[x_1, x_2, \ldots, x_N \quad \sigma_1, \sigma_2, \ldots, \sigma_N \quad \alpha_1, \alpha_2, \ldots, \alpha_M \]

\[R^N \rightarrow R^M \]
The inverse mapper for global analysis

\[\sigma^{-1}_P x \rightarrow R^M \]

Can we use Machine Learning?
Partnership with computer scientists

- M. Almaeen (ODU)
- Y. Awadh Alanazi (ODU)
- M. Houck (Davidson College)
- M. P. Kuchera (Davidson College)
- Y. Li (ODU)
- W. Melnitchouk (JLab)
- R. Ramanujan (Davidson College)
- NS (JLab)
- E. Tsitinidi (Davidson College)
ML prototypes

Tested and validated in toy DIS–like examples

How about real QCD analysis?
ML prototypes

- Tested and validated in toy DIS–like examples

How about real QCD analysis?
ML prototypes

- Tested and validated in toy DIS–like examples
- How about real QCD analysis?
Application to unpolarized DIS
Application to unpolarized DIS

Q^2

$W^2 > 10 \text{ GeV}^2$

\times_{bj}

g

u_V

d_V

$\bar{d} - \bar{u}$

$s + \bar{s}$

$\bar{u} + d$

$\frac{1}{x}$
Application to unpolarized DIS
Application to unpolarized DIS

Proton DIS kinematics

Blobs $\propto \chi^2$

$\frac{\chi^2_{JAM}}{N_{\text{pts}}} = 1.25$

$\frac{\chi^2_{ML}}{N_{\text{pts}}} = 1.36$
Summary and outlook

- A new paradigm for QCD

+ simultaneous extraction of PDFs and FFs
+ boosts the SIDIS program to study hadron structure
+ the ultimate strategy for TMD and GPD physics
+ ripe for Machine Learning techniques
Summary and outlook

- A new paradigm for QCD
 - simultaneous extraction of PDFs and FFs
Summary and outlook

- A new paradigm for QCD
 - simultaneous extraction of PDFs and FFs
 - boosts the SIDIS program to study hadron structure
Summary and outlook

■ A new paradigm for QCD
 + simultaneous extraction of PDFs and FFs
 + boosts the SIDIS program to study hadron structure
 + the ultimate strategy for TMD and GPD physics
Summary and outlook

- A new paradigm for QCD
 + simultaneous extraction of PDFs and FFs
 + boosts the SIDIS program to study hadron structure
 + the ultimate strategy for TMD and GPD physics
 + ripe for Machine Learning techniques