
Dark Energy Spectroscopic Instrument (DESI)
Making a 3D Map of the Universe at NERSC

Stephen Bailey
LBNL Physics

NUG SIG
Experimental Facilities
2020-06-03

— What we do at NERSC
— Successes
— Challenges

Stephen Bailey – LBNL

We’re making a 3D Map of the Universe
Start with 2D map
■ Take pictures of the night sky
■ Measure locations of blobs –> x,y
■ Combine 10s of millions of images from:

— 5 ground-based telescopes
— 3 satellites
— 6 funding agencies on 4 continents
— 4 data portals (some with single image http as the only data access option)

■ Bring them all together at NERSC and do a joint fit across all datasets
■ Share the results with everyone

— http://legacysurvey.org
— http://legacysurvey.org/viewer (a Spin service at NERSC)
— /global/cfs/cdirs/cosmo/data/legacysurvey/dr8
— ~900 TB of inputs + outputs

2

The past 5 years.
One big run left
to go (~20M hours)

http://legacysurvey.org
http://legacysurvey.org/viewer

Stephen Bailey – LBNL

DESI: getting the 3rd dimension
■ Select a subset of objects
■ Measure their spectra (photons vs. wavelength)
■ Fit scale factor in wavelength compared to reference templates –> “redshift”

3

Template at redshift=0  
Offsets between emission lines

Template at redshift=0.1  
Spectra matches template

The next 5 years
(once we tackle COVID19 and can reopen)

(and statistically the 4th, 5th, and 6th
dimensions, not covered here)

Stephen Bailey – LBNL

DESI Robotic Positioners

4

5000 robots + 10 spectrographs + 250 km of fiber optic cable
= measure 5000 redshifts every ~15 minutes
–> data 30x spectro CCD images, ~700 video frames (~3Mpix each) “guiding” the telescope

Stephen Bailey – LBNL

DESI Data Processing Basics
Nightly: long running processes on workflow node
■ Every 10 minutes rsync new data from Kitt Peak, AZ –> NERSC
■ New data –> launch jobs to realtime queue (10 nodes)
■ Results ready by breakfast for analysis during day, 

to inform the following night’s observing plan
■ ~60 GB/night input —> ~375 GB/night output

— spectra + redshifts of 50k-100k galaxies, quasars, stars
■ Repeat for 5 years to build 3D map of ~50M objects
■ Mostly python, but designed for both laptops and HPC from the beginning

Monthly / yearly
■ Reprocessing runs with latest tagged code, starting from raw data
■ Same code as nightly processing, but very different scaling needs
■ This is the primary reason for DESI @ NERSC

— Also: one stop shopping for daily processing, big reruns, final science analyses

5

Stephen Bailey – LBNL

CPU & Disk Projections

6

C
um

ul
at

iv
e

Di
sk

 S
pa

ce
 [T

B]

0

2250

4500

6750

9000

Calendar Year
2017 2018 2019 2020 2021 2022 2023 2024 2025

Imaging
Spectro
Science

M
illi

on
s

of
 N

ER
SC

 M
PP

 h
ou

rs

0

40

80

120

160

Calendar Year
2017 2018 2019 2020 2021 2022 2023 2024 2025

Imaging
Spectro
Science

50M - 150M 
MPP hours/year Growing to ~9 PB

on disk

Stephen Bailey – LBNL

DESI uses the full NERSC ecosystem
Computing
■ Realtime for nightly, big iron for reprocessing

I/O
■ CFS, scratch, HPSS
■ Globus, rsync, portal.nersc.gov + spin container with nginx

Workflow
■ Workflow nodes, databases

Analysis
■ Jupyter
■ Interactive & debug queues

QA monitoring
■ Spin, cron jobs

7

We rely upon much more than just
raw FLOPS and I/O bandwidth.
Corollary: outages of any of these
services negatively impact us

http://portal.nersc.gov

Stephen Bailey – LBNL

Success: testing @ NERSC
Open source on github + travis continuous integration testing
■ Branches, pull requests, code review
■ Travis CI automatically runs unit tests for all pull requests

Nightly cronjob script at NERSC
■ “git pull” for all our repos
■ Rerun unit tests at NERSC

— does it work as installed at NERSC, not just on Travis servers?
■ Run integration tests combining repos

— uses larger datasets and longer runtime than viable for Travis
— nightly email with success or problems

■ Not fancy, but easy to maintain and very useful to catch problems early

Quarterly for software releases
■ larger integration test: jupyter + interactive queue –> “reference runs”

8

Stephen Bailey – LBNL

[WIP] Success: resilient workflow
Hard: make jobs that don’t fail
■ Hard because often the failures are beyond your control  

(I/O hangs, bad nodes, srun failures, DB connection failures)
■ Reasons vary with time, but 1-2% failures is common

Better: make it easy & efficient to recover
■ Efficient for human to know what went wrong and want to do

— or even fully automated retries
■ Same launch commands and jobs adapt to redoing only what is needed

— it shouldn’t require a lot of handwork to re-submit the 1% of input files that failed

Ideas aren’t new
■ TCP packet retries
■ MapReduce / Hadoop
■ Checkpoint restart on steroids

9

Tools like taskfarmer and GNU parallel are only
part of the solution; also need tools for how to
efficiently recover when things go wrong
(because in big runs, something going wrong
is the norm, not the exception).

Stephen Bailey – LBNL

Challenge: queuing complex dependencies

10

Flat Calib 
25 nodes x 10 minFlat Calib 

25 nodes x 10 minFlat Calib 
25 nodes x 10 minFlat Calib 

25 nodes x 10 minArc Calib  
19 nodes x 10 min each

Arc Calib  
25 nodes x 12 minArc Calib  

25 nodes x 12 minArc Calib  
25 nodes x 12 minArc Calib  

25 nodes x 12 minFlat Calib 
19 nodes x 12 min

Science Extract+ 
19 nodes x 2.5 min

Science preproc: 
4 nodes x 1 min  
x 30 exp

Redshift fitting:
25 nodes x 45 min

Science calib: 
2 nodes x 10 min  
x 30 exp

One short night of data: O(100) units of work with wildly varying time and CPU needs

Science Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 minScience Extract+ 

19 nodes x 2.5 minScience Extract+ 
19 nodes x 2.5 min

See 2 weeks ago:
For rerun of 5 years of data,
submitting ~110 x 365 x 5 = 200k jobs
with interdependencies
isn’t a slurm queuing best practice

Time

Nodes

Stephen Bailey – LBNL

Attempt 1: Bundle each step x ~1 week of data

11

A

 B

C

Time

Nodes

...

Job A

Job B

Job C
Pros:
– Big HPC-like jobs
– Most efficient packing (in theory)
– When it works, it works great

Cons:
– Still requires hundreds of jobs, only 2 of which are priority 
 scheduled, and remainder are bigger than ideal for backfill
– Job B doesn’t start aging in queue until A finishes
– Couples otherwise completely independent data  
 processing (one rank can take down all ranks)
– I/O hang of one rank wastes time of thousands of others
 waiting for job to timeout
– Recovery takes a long time to get through queue
– Startup hammering disk, DB

Stephen Bailey – LBNL

Attempt 2: 1 exposure = 1 job, accept inefficiencies

12

A

 B

C

Time

Nodes

...

Pros:
– Faster end-to-end for subset of data
– Decouples independent data
– Matches realtime job packing method
– I find this structure easier to work with, but that is
 somewhat a matter of taste

Cons:
– Many more jobs (~60k), won’t scale to 5 years of data
 without job launch throttling (like Fireworks launcher)
– Wasted cores within a job during certain steps
– We’ve started thinking of ways that we would like to
 couple different exposures for algorithmic reasons

A

 B

C

A

 B

C

A

 B

C

Job 1 Job 2 Job 3

Stephen Bailey – LBNL

Dreaming big: what would help
“This then that” scheduling
■ I know I want to do A then B then C, 

and I know their sizes ahead of time
■ Scheduler Tetris with non-rectangles

“Big bag of equivalent jobs” scheduling
■ If I have 100k identically sized jobs to run, slurm shouldn’t have to loop over

them individually to pick the best one if it only has one slot to fill
— cases where total work is >> 1 job + taskfarmer / GNUparallel

Dynamically sized jobs
■ Job with steps A+B+C could release a lot of nodes after finishing B

I know these are hard to implement
■ Do other Experimental Facilities projects face workflows where different steps

have very different parallelism needs, making them hard to pack into jobs?

13

A

 B

C

Stephen Bailey – LBNL

Challenge 2: data shuffling within NERSC
“Compute on $SCRATCH, share on CFS” model doesn’t work well for us
■ Example reasons

— Until recently, lack of Globus for collaboration accounts
— scratch quotas << campaign data volumes
— scratch quota per user, CFS quota per repo
— campaign durations >> scratch purge cycles
— Scratch metadata performance fluctuations outweigh  

theoretical bandwidth benefits for some of our workflows
■ All of these have workarounds, but in practice this has led to lots of human

effort and lots of human errors

Feels like an area that could use better / shared tools
■ Seamlessly flowing data between HPSS, scratch, CFS, burst buffer, /tmp
■ Do other projects share this pain point? Or have transferable solutions?

14

Stephen Bailey – LBNL

Summary
DESI is making a 3D map of the universe  
using NERSC as the primary computing center
■ Yearly reprocessing drives the need for HPC
■ Also benefit from one stop shopping for data processing + science analyses

Successes
■ Testing @ NERSC
■ [WIP] resilient workflows

Challenges
■ Queueing N>>1 algorithmic steps with very different parallelism needs
■ Coordinating dataflow within NERSC (HPSS, scratch, CVS, BB, /tmp)

15

Thank you

