
Lisa Gerhardt

Scheduling Jobs at 
NERSC

May 20, 2020
NUG SIG EX Meeting 



How do we schedule a mixed and evolving workload?

Pipeline/Workflow
Management Nodes

“I need a service running 24/7 to 
manage my data analysis pipeline”

Shared-node Queue
Transfer Queue

“I only need 2 cores (and I’m not willing 
to pay for the full node)”

“I need to transfer many PB of data”

Real-Time Queues for 
Co-Scheduling w/Experiments

“I need to analyse this microscope data 
immediately otherwise my experiment will fail”

Interactive Queues:
64 Nodes x 4 Hours

“I need to interactively debug my 
code at scale without waiting in the 

batch queue”

Deadline Computing
“I need to analyze this 

telescope data before sunrise”

Large-scale 
simulations

“I need to run my climate 
model on 9000 nodes”



Scheduling is tough

Running Jobs = Job Queue + Algorithm + Policy

● Initial Priority
● How priority changes over 

time
● Quantity/type of resources 

allowed
● System constraints

Policy

● Immediate Scheduler 
(FIFO)

● Conservative Backfill
● Aggressive Backfill

Algorithm

● Resource 
Requests/Constraints

● Job Script
● Time limit
● Metadata

Jobs



Heterogeneous Scheduling

now

time

n
o
d
e
s

CPU GPU

Memory Network 
Configuration

External 
Network Storage

The system isn't simply comprised of "nodes", slurm has 
to balance utilization of many different resources. 

Systems group and SchedMD 
have developed tools for 
scheduling GPUs already 
deployed on Cori’s GPU testbed.



A Tale of Two Schedulers

now

time

n
o
d
e
s

and
 so

 o
n...

● Slurm has two schedulers
○ Immediate scheduler 

looks at only the top 400 
jobs

○ Backfill looks at all the 
pending jobs ordered by 
priority and QOS and tries 
to pack them in as 
efficiently as possible

● Priority of jobs is based on 
time since submission (with 
some bonuses depending on 
the QOS)

Slurm Backfill Enhancements:
● Immediately improved 

utilization by 7%
● Further improvements have 

helped keep utilization percent 
in the mid-high 90s



Backfill

• To pack the system efficiently, the backfill scheduler must be able to 
look through all the pending jobs in the scheduling window
• In an ideal world, backfill would loop over all the jobs every 30 

seconds
• In practice, the shortest we’ve seen it take is 3 minutes 
• Configured cutoff for calculation is 15 minutes

• Utilization drops if the backfill scheduler can’t get through the list in 
this time
• Usually means slurm is under stress from another source, like 

too many sruns or squeues, or many nodes finishing at once
• In the past, could also happen if there are too many jobs to 

calculate, which led to us imposing limits on what jobs are 
eligible for backfill



Priority and Backfill Details

• Jobs enter the system at 64800 priority for shared and regular QOS
• Debug is at 69060 but it has its own dedicated pool of nodes
• Premium is at 69120

• Jobs age in priority at a rate of 1 / minute
• Only two jobs per user age at a time (more on this in a moment)
• To get through the backlog in time, the backfill algorithm will only 

reserve (i.e. schedule) jobs with a priority higher than 69121 
• Only looks at the first 100 jobs per association (user + account)
• It will only run lower priority jobs if they can start immediately 

and without delaying already scheduled higher priority jobs
• Backfill rebuilds from scratch each time. If a higher priority job 

appears it can interject itself and reorder the whole schedule
• This is why predicting starting times is hard



Rule of Two 

• Each job puts a fixed load on the backfill scheduler regardless of size
• Limiting ageing to two jobs per user is an important tool for keeping 

the load manageable 
• We understand this poses a challenge to many users analyzing data from 

experimental facilities who may use significant amounts of compute time, 
but bundle work in smaller elements

• This is why we we recommend using different workflow tools as they can 
‘trick’ SLURM into thinking there is a single job to schedule but enables 
multiple jobs to run inside the reservation
• See Bill’s presentation in two weeks on workflow options

• Longer term we are working on how to better schedule higher throughput 
workflows without bringing down the scheduler



Scheduling Improvements

• Systems group and SchedMD have been working on improving the performance 
of the backfill scheduler

• Funded development to handle storm of LDAP queries
• Cli_filter: checks user’s scripts before the submit filter, reduces load on the 

scheduler
• Performance has improved to the point where the 3-day gap can be dramatically 

reduced
• Will allow jobs to be much more rapidly considered by the backfill scheduler
• Should be implemented soon

• Future ideas for increasing throughput
• Would need funded development from SchedMD and may take a few years to 

be available
• Only considering the top X node hours for ageing (so 100 1-node jobs from a 

user is the same a 1 100-node job from another user)
• Bundling jobs from the same user with the same shape into a “workflow 

block” that slurm schedules all at once



Questions for You

• If you have a large ensemble of jobs you need to run
• How much needs to finish to be able to move onto the next stage?

• 100%? 80%? 50%?
• What if you could get a small fraction much sooner than the rest?
• Can these jobs be bundled together?
• Are these jobs all the same (i.e. same wall time, memory usage, 

number of cores)?
• Do they have dependencies?

• If you’re not running a large ensemble, what does your workflow look 
like?

• Are they other features of our queue policy that you would change?



Thank You


