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Motivation
● θ

13 
is large[1],[2]

● Current and future generations of neutrino experiments 
will look at oscillations between muon and electron 
neutrino and anti-neutrinos to:  

● Improve measurements of θ
13 

● Measure the CP violating parameter δ
● Determine the neutrino mass hierarchy

● Differences in the electron and muon neutrino cross 
sections will affect the uncertainty of these 
measurements

● Quasi-elastic interaction dominates at low energies and 
is also used to normalize other cross sections
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Sources of Difference and 
Uncertainties

● Kinematic Limits
● Axial Form Factor Contributions
● Pseudoscalar Form Factor Contributions

● Pole mass uncertainty
● Goldberger-Treiman Violation

● Second Class Current Contributions
● Vector and Axial Form Factors

● Radiative Corrections
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Quasi-Elastic Cross Section
● Equation as follows[3]:

● Simple cross section assumes single nucleon interaction
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Quasi-Elastic Cross Section
● Equation as follows[3]:

● Simple cross section assumes single nucleon interaction

● F1

V
,F2

V
 measured in electron scattering experiments

● At low Q2(<1 GeV2) F1

V
,F2

V
 ~ 1/(1+Q2/m

v

2)2 - “Dipole Approximation”
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Quasi-Elastic Cross Section
● Equation as follows[3]:

● Simple cross section assumes single nucleon interaction

● F1

V
,F2

V
 measured in electron scattering experiments

● At low Q2(<1 GeV2) F1

V
,F2

V
 ~ 1/(1+Q2/m

v

2)2 - “Dipole Approximation”

● Three axial and three vector form factors to parameterize

● F
A
 - Same model with m

A
 instead of m

v  
(no high Q2 corrections studied)

● F
p
, F3

A
 and F3

V
 terms are less well studied
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Kinematic Limits

● Range of possible Q2 values is larger for electron neutrinos, creating 
difference which is accounted for in all current generators 

● The effect of the kinematic limits is larger at lower neutrino energies 
where limits make up more of the Q2   range

● Effect at maximum is smaller for anti-neutrinos because electron anti-
neutrino cross section is smaller at high Q2

T2K v 
Oscillation 
Peak

Possible 
HyperK v 
Oscillation 
Peak
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Lepton Mass in Bare Cross Section
● Contributions of various form factors affected by lepton 

mass, m: 

● All current neutrino event generators include mass terms 
with F1

v 
,F2

V
,F

p 
 and F

A
 

● Difference in Born cross section between the muon and 
electron neutrino case are caused completely by these mass 
terms

● For terms that exist only ~m2/M2 (where M is the nucleon 
mass), F

p
 and F3

V
, contribution to electron neutrino cross 

section is negligible
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Uncertainty in F
A

● Assume dipole approximation

● Large discrepancy for m
A
 in 

different neutrino experiments 
and pion electroproduction(ex. 
mavg

A
 ~ 1.03[4], mπ

A
~1.07[5], m

A
 ~ 

1.35[6])

● Largest leading term uncertainty 

● Uncertainty included in models

● Compare model with m
A
 = 0.9 

and m
A
 = 1.4 to reference model 

with m
A
 = 1.1

H. Gallagher, G. Garvey, 
and G.P. Zeller, Annu. 
Rev. Nucl. Part. Sci. 2011. 
61:355–78
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Uncertainty in F
A
 cont.

● Large variation at low energy predominately from 
effects in Q2 regions at kinematic boundaries 

Y axis is 
percentage 
difference in 
Delta between 
modified and 
reference model

T2K v 
Oscillation 
Peak

NuFact 2012 Williamsburg, VA



  14

Calculating F
p

● From PCAC get relationship:

● Where g
π
(Q2) is the pionic form factor. 

● Goldberger Treiman[7]: f
π
 g

π
(Q2) = M

n
 F

A
(Q2) 

● Assume true for all Q2 
● Gives following relationship:

F pQ
2
=

−2M n F A0

Q 2 
g Q

2


g 01
Q 2

m
2


−
F AQ

2


F A 0 
???
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Uncertainty in F
p

● F
P
 measured from pion electroproduction in range 0.05 to 0.2 

GeV/c2

● Uncertainties limit pole mass(assumed to be M
π
) to range 0.6 M

π
 

to 1.5 M
π

● These uncertainties are not taken into account in current models

Choi, S. et al. Phys. 
Rev. Lett. 71, 3927–
3930 (1993)
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Uncertainty in F
p 
cont.

● Goldberger-Treiman violation of ~1-6%[8],[9] measured at Q2=0 

● Theoretical predictions suggest this may disappear at higher 
Q2

● Model simply as 3% variation in F
P
(0)

● Uncertainty not included in current models

Alexandrou, C. et al. 
Phys. Rev. D 76, 
094511 (2007)

Lattice QCD Prediction 
- Overestimates 
violation at low Q2, 
predicts G-T 
Violation-->0 at high 
Q2
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Uncertainty in F
p
 cont.

● All effects are small compared to neglecting F
p
 (~0.1-2% effect at reference)

● Even with exaggerated model, G-T violation effect is small

T2K v Oscillation 
Peak
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Second Class Currents
● G parity is basically an assertion that both T and C are 

conserved by the hadron current

● Second class current terms do not conserve G parity

● F3

A
 and F3

V
 are the form factors of the SCCs

● Non-zero F3

v 
 effect on CVC not seen in electron 

hadron scattering

● Constraints primarily from beta decay experiments at 
Q2 = 0

● Calculations assume dipole form for Q2 dependence
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Uncertainty in F3

A

● “KDR parameterization”[10], constrains F3

A
(0) from:

● Single nucleon form factor
● Two nucleon mechanisms
● Meson exchange currents

● Beta decay experiments use mirror nuclei, 
which swap n↔p

● Combine results to improve uncertainty [11] 

(A=8,12,20)

● F3

A
(0)/F

A
(0) ~ 0.1, consistent with no effect
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Uncertainty in F3

A 
cont.

● Due to strong constraints, possible differences 
from F3

A
(0) are very small

T2K v 
Oscillation 
Peak
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Uncertainty in F3

V

●  F3

V
 less well studied than F3

A

● Beta decay experiments[12]  constrain: 

                  F3

V
(0) /F1

V
(0) ~ 2 ± 2.4 - Huge!

● Muon capture[13] , (anti-)neutrino cross sections[14] 
also sensitive 
● Current measurements require additional assumptions

● Poor constraint creates potentially large 
uncertainty

● Uncertainty is not included in current models
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Uncertainty in F3

V 
cont.

● With current limits on F3

V
 at reference have 

difference of ~2%

T2K v 
Oscillation 
Peak
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Summary of Non-Included Effects

Vector Second 
Class Current has 
largest possible 
effect due to being 
poorly constrained

T2K v 
Oscillation 
Peak

T2K v 
Oscillation 
Peak
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Summary of Non-Included Effects 
cont.

Difference between 
neutrino and anti-
neutrino show possible 
contributions to CP 
violation uncertainties

T2K v 
Oscillation 
Peak
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Radiative Corrections
● No complete calculation for this energy region exists

● Experimental issue: Energy from radiated photons will 
be included for electron neutrino interactions but not for 
muon neutrino interactions

● Use leading log method (up to log(Q/m), where Q is the 
energy scale of the interaction process) [15]

● Only calculate “lepton leg” terms
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Radiative Corrections cont.
● Correction from simple method seems extremely large

● Criticisms of this method say that Wγ exchange with the lepton 
legs will cancel some or all of the effects seen

● Full calculation needed

● Important to add this correction to current neutrino generators, 
if only to correct reconstruction issues

T2K v 
Oscillation 
Peak
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Effects at Various Energies

● Lower energy, higher effect
● Vector SCC and Radiative Corrections may affect 

even NOvA

Effect  Experiment(Oscillation 
                      Peak)

Cern-Frejus[16] (260 
MeV)

T2K[18](600 MeV) NOvA[17](2 GeV)

F
A

v 2 % 1 % 0 %

v 2 % 0.5 % 0 %

F
p

v 0.5 % 0 % 0 %

v 1.5 % 0 % 0 %

F3

A
v 0 % 0 % 0 %

v 0.5 % 0 % 0 %

F3

V
v 5.5 % 2 % 0.5 %

v 8.5 % 3.5 % 0.5 %

Rad. Cor. v 10 % 10 % 9 %

v 13.5 % 11.5 % 8.5 %
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Conclusions
● Muon and electron neutrino cross section uncertainties affect  

mixing angle, CP violation and the mass hierarchy measurements

● Contributions come from multiple sources, some of which are 
currently modeled and some of which are not:

● Kinematic limit has consistently large effect, but is modeled

● Uncertainty in F
A
 contributes only ~1-2% to lower energy 

experiments 
● Non-Standard effects can contribute two to three times as much 
● From simple calculation, radiative corrections may have non-

trivial contribution to cross section difference which should be 
understood

● Summary: To improve uncertainty must improve constraints and 
understand all sources of error
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F3

V
 w/ Varied Q2
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F3

A
 Muon Neutrino Difference
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