Jefferson Lab

RF DIPOLE DEFLECTING/CRABBING CAVITIES

Subashini De Silva

Center for Accelerator Science Department of Physics, Old Dominion University and Thomas Jefferson National Accelerator Facility

Compact Deflecting/Crabbing Designs

- Operate in TE-like or TEM-like modes
 - 4-Rod Cavity (University of Lancaster / Jefferson Lab)
 - Parallel-Bar / RF-Dipole Cavity (ODU / SLAC)
 - Quarter Wave Cavity (BNL)
- RF Dipole design has
 - Low surface fields and high shunt impedance
 - Good balance between peak surface electric and magnetic field
 - No LOMs
 - Nearest HOM is widely separated (~ 1.5 fundamental mode)
 - Good uniformity of deflecting field due to high degree symmetry

Current Applications of RF Dipole Cavity

Page 3

RF Dipole Cavity

- Operates in a TE-like mode (cannot be a pure TE mode Panofsky Wenzel Theorem)
- Deflecting/Crabbing mode is the lowest operating mode
- Net deflection is mainly due to the transverse electric field
- Transverse voltage

Characteristics of the RF-Dipole Cavity

- Properties depend on a few parameters
 - Frequency determined by diameter of the cavity design
 - Bar Length $\sim \lambda/2$
 - Bar height and aperture determine $E_{\rm P}$ and $B_{\rm P}$

RF-Dipole Square Cavity Options

- Square-type rf-dipole cavity to further reduce the transverse dimensions
- Frequency is adjusted by curving radius of the edges
- RF-dipole cavity with modified curved loading elements across the beam aperture to reduce field non-uniformity

Voltage deviation at 20 mm

RF-Dipole Cavity Designs

Frequency	499.0	400.0	750.0*	MHz	
Aperture Diameter (d)	40.0	84.0	60.0	mm	
d/(λ/2)	0.133	0.224	0.3		
LOM	None	None	None	MHz	
Nearest HOM	777.0	589.5	1062.5	MHz	
E_p^*	2.86	3.9	4.29	MV/m	
B_p^{*}	4.38	7.13	9.3	mT	
B_p^*/E_p^*	1.53	1.83	2.16	mT/ (MV/m)	
$[R/Q]_T$	982.5	287.2	125.0	Ω	
Geometrical Factor (<i>G</i>)	105.9	138.7	136.0	Ω	
$R_T R_S$	1.0×10 ⁵	4.0×10 ⁴	1.7×10 ⁴	Ω^2	
At $E_T^* = 1$ MV/m					

499 MHz Deflecting Cavity for Jefferson Lab 12 GeV Upgrade

400 MHz Crabbing Cavity for LHC High Luminosity Upgrade

750 MHz Crabbing Cavity for MEIC at Jefferson Lab

HOM Properties of the RF-Dipole Cavity

Wakefield and Impedance

- T3P EM Time Domain Solver in the SLAC ACE3P Suite
- For the 400 MHz crabbing cavity
- Bunch Parameters
 - $-\sigma = 1.4 \text{ cm}$

HOM Damping

• Widely separated HOMs from the operating mode allows more options in the design of damping schemes

Waveguide Damping

• Strong damping was achieved with waveguide couplers

Coaxial Coupling

 A high pass coaxial couplers to exclude the operating mode

Z. Li et.al., in Proceedings of the 3rd IPAC, New Orleans, Louisiana (2012), p. 2185

Multipacting Analysis

Track3P – Particle tracking code in the SLAC ACE3P Suite ٠ For the 400 MHz square-shaped crabbing cavity ۲ Multipacting - Impact Energy vs V T 4000 +‡ 3500 **Deflecting Voltage** 3000 0.5MV to 2.6 MV Impact energy (eV) 2500 1.8 MV to 2.8MV 2000 3.0 MV to 6.0 MV • 1500 1000 500 🗸 T (MV) Multipacting - location z vs VT Multipacting - MP order vs V_T 0.4 ++ 1.6 —Niobium 0.35 1.4 10 + 0.3 1.2 0.25 1.0 MP order 8.0 EV (m) z 0.2 0.6 0.15 0.4 0.1 0.2 0.05 0.0 0 500 1000 1500 2000 0 0 2 0 1 3 4 5 3 Impact Energy (eV) V_T (MV) VT (MV)

Z. Li et.al., in Proceedings of the 3rd IPAC, New Orleans, Louisiana (2012), p. 2185

Page 11

Mechanical Analysis – 499 MHz Cavity

• Without any kind of stiffening or pressure sensitivity optimization

<u>Pressure</u>

Pressure sensitivity - 212 Hz/torr

Jefferson Lab

Lorentz Detuning

Room temperature cavity with a uniform 3 mm thickness

- $\Delta f = 6.15 \text{ kHz} @ V_T = 3.0 \text{ MV}$
- $k_L = 61.54 \text{ Hz}/(\text{MV/m})^2$

Fabricated cavity at 4 K

- $\Delta f = 4.93 \text{ kHz} @ V_T = 3.0 \text{ MV}$
- $k_L = 49.27 \text{ Hz/(MV/m)}^2$
- Deformation = $1.2 \,\mu m$

Mechanical Modes

- Cavity with a 3 mm uniform thickness
- At room temperature and under vacuum

Tuning Sensitivity – 499 MHz Cavity

499 MHz RF-Dipole Cavity Fabrication

400 & 750 MHz RF-Dipole Cavity Fabrication

400 MHz Crabbing Cavity

750 MHz Crabbing Cavity

Properties of Cavities Under Development

Parameter		A A	5	Ĩ		Alex Cast	illa (ODU))	Unit
Frequency	400.0		49	9.0	750.0		0.0		MHz
Particle	р		e-		e	e		р	
Deflecting voltage (V_T^*)	0.375		0.3		0.2			MV	
Peak electric field (E_P^*)	3.9		2.86		4.29			MV/m	
Peak magnetic field (B_P^*)	7.13		4.38		9.3			mT	
Required transverse voltage per beam	10.0		5.6		1	1.5		.0	MV
No. of cavities	3		2		1		4		
Transverse voltage per cavity	3.4		3.0		1.5		2.0		MV
Peak magnetic field (B_P)	64.7		43.8		69.8		93.0		mT
Peak electric field (E_P)	35.4		28.6		32.2		42.9		MV
R _T R _S	3.7×10 ⁴		3.6×10 ⁴		3.7×10 ⁴			Ω ²	
Operating temperature	2.0	4.0	2.0	4.0	2.0	4.0	2.0	4.0	к
Surface Resistance $(R_s)^{**}$	11.3	70.0	12.0	100.0	14.0	200.0	14.0	200.0	nΩ
Power dissipation per cavity **	3.6	21.9	3.0	25.0	0.9	12.2	1.6	21.7	W
At $E_T^* = 1 \text{ MV/m}$ ** Estimated									

Summary

- Development of compact deflecting/crabbing cavities was in response to the strict dimensional requirements in some current applications
- Compact rf-dipole design has
 - Low and balanced surface fields
 - High shunt impedance
 - Has no lower-order-mode with a well-separated fundamental mode
- Work in progress
 - 499 MHz deflecting cavity
 - Fabrication will be completed by Nov-Dec
 - 400 MHz crabbing cavity
 - Preparation for processing
 - Bulk BCP Fixtures and parts are being fabricated for both cavities (Nov-Dec)
 - 750 MHz crabbing cavity
 - Cavity processed with bulk BCP of 150 μm

Acknowledgements

- Jefferson Lab
 - HyeKyoung Park
- ODU
 - Alejandro Castilla
- SLAC
 - Zenghai Li, Lixin Ge
- Niowave
 - Dmitry Gorelov, Terry Grimm
- The work done at ODU is towards my PhD carried out under the supervision of Dr. Jean Delayen

Design Evolution

- To increase mode separation between fundamental modes
- ~18 MHz → ~ 130 MHz
- To improve design rigidity → Less susceptible to mechanical vibrations and deformations
- To lower peak magnetic field
- Reduced peak magnetic field by ~20%

Design Evolution

- To remove higher order modes with field distributions between the cavity outer surface and bar outer surface
- Eliminate multipacting conditions

- To lower peak magnetic field
- Reduced peak magnetic field by ~25%
- To achieve balanced peak surface fields
- $B_{\rm P}/E_{\rm P} \approx 1.5 \, {\rm mT/(MV/m)}$

Stress Analysis – 499 MHz Cavity

A: ¥TA Cool down (Room Temp 1.4 atm)

Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1

- Fixed support from the top
- Pressure = 0.14186 MPa
- With standard earth gravity

F: VTA Test condition (4K 1 atm) Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1

-	27.585 Max
	24.526
_	21.468
4	18.41
_	15.352
	12.294
-	9.2353
-	6.1771
	3.1189
	0.060644 Min

