

Design, fabrication, and high Q₀ testing of the main linac cavity for the Cornell ERL

Cornell University

N. Valles, F. Furuta, M. Gi, D. Gonnella, Y. He, V. Ho, G. Hoffstaetter, M. Liepe, T. O'Connell, S. Posen, P. Quigley, J. Sears, V. Shemelin, M. Tigner and V. Veshcherevich

> TTC Meeting 2012 November 7

FR

ERL Cavity Overview

- 5 GeV, 100 mA CW beam
 - 8 pm emittance, 2 ps bunch length
- Stable operation
 - Strong HOMs can cause beam breakup
 - ~200 W HOM power in beamline loads/cavity
- CW operation
 - $-Q(1.8 \text{ K}) = 2 \times 10^{10} @ 16.2 \text{ MV/m}$
 - 10 W cryogenic loss from fundamental/cavity
 - ~4 MW wall power

Cornell Energy Recovery Linac Project Design Report *Editors: G. Hoffstaetter, S. Gruner, M. Tigner*

TTC20

- Cavity Design
 - Central focus: Maximize threshold current through linac
 - Center cell geometry
 - End cell geometry
 - Beam line HOM absorbers
 - Fundamental power coupler design
 - Simulate ERL performance with realistically shaped cavities
- Fabrication & Test Results
 - Prototype cavity fabrication process
 - Installation into horizontal test cryomodule
 - Horizontal Cryomodule Test Results (HTC-1 and HTC-2)
- Conclusions & Future Plans

- Cavity Design
 - Central focus: Maximize threshold current through linac
 - Center cell geometry
 - End cell geometry
 - Beam line HOM absorbers
 - Fundamental power coupler design
 - Simulate ERL performance with realistically shaped cavities
- Fabrication & Test Results
 - Prototype cavity fabrication process
 - Installation into horizontal test cryomodule
 - Horizontal Cryomodule Test Results (HTC-1 and HTC-2)
- Conclusions & Future Plans

Cavity Design

Goal: Maximize I_{th} > 100 mA (under constraints)

Center cells

- Geometries are (nominally) identical
- Responsible for general properties of HOM spectrum
 - Controls frequencies of HOM passbands and dispersion relations
 - Determines cell-to-cell coupling and how sensitive HOM spectrum is to variation in cell shape

End cells

- Asymmetric design helps prevent trapped modes
- Responsible for coupling HOMs to HOM absorber
 - Directly controls quality factors of HOMs

Beam Pipe

• Should be short to improve linac fill factor but long enough to avoid dissipating too much power from the fundamental mode in HOM loads

HOM load

- Absorber material properties determine specific mode losses.
- Also serves as bellows connecting cavities

Scaling of threshold current

Center Cell design

Optimization Constraints

- Minimize the **worst value** of $\xi_{\lambda} = \left(\frac{R}{Q}\right)_{\lambda} \frac{\sqrt{Q_{\lambda}}}{f_{\lambda}}$ over all dipole HOM passbands up to 10 GHz (worst mode matters!)
- Constraints
 - Maintain Epk/Eacc < 2.1
 - Keep Hpk/Eacc < 4.2 mT/(MV/m)</p>
 - Limit wall angle to 85°
 - Limit radius of curvature to 6 mm
 - Maintain high fundamental mode R/Q x G (Maximal reduction < 5%)
- Design Validation
 - Cavity's optimized properties should be preserved for realistically shaped cavities (machining variation)

Cavity Design

Central focus: Maximize threshold current through linac

- Center cell geometry
- End cell geometry
- Beam line HOM absorbers
- Fundamental power coupler design

Simulate ERL performance with realistically shaped cavities

- Fabrication & Test Results
 - Prototype cavity fabrication process
 - Installation into horizontal test cryomodule
 - Horizontal Cryomodule Test Results (HTC-1 and HTC-2)
- Conclusions & Future Plans

NSF

N. Valles - Design, fabrication, and high Q0 testing of the main linac cavity for the Cornell ERL

BBU Simulations

Cell Length Error

Elliptically Deformed Cell

Cell Radius Error

TTC2012

N. Valles - Design, fabrication, and high Q0 testing of the main linac cavity for the Cornell ERL

Coupler Kick Studies

Coupler Kick Studies in Cornell's 7-Cell Superconducting Cavities. N. Valles, M. Liepe and V. D. Shemelin. SRF 2011

$$\begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \end{pmatrix} = \frac{q}{c} \int \begin{pmatrix} E_{x} \cos(kz) - cB_{y} \sin(kz) \\ E_{y} \cos(kz) + cB_{x} \sin(kz) \\ E_{z} \cos(kz) \end{pmatrix} dz$$

$$\kappa(f)^{2} = \frac{P_{x}(f)^{2} + P_{y}(f)^{2}}{P_{z}(f)^{2}}$$

$$\int_{10^{-6}}^{10^{-6}} \frac{|P_{z}|}{|K|} + \frac{|P_{z}|}{|K|}$$

N. Valles - Design, fabrication, and high Q0 testing of the main linac cavity for the Cornell ERL

TTC2012

- Central focus: Maximize threshold current through linac
 - Center cell geometry
 - End cell geometry
 - Beam line HOM absorbers
 - Fundamental power coupler design
- Simulate ERL performance with realistically shaped cavities
- Fabrication & Test Results
 - Prototype cavity fabrication process
 - Installation into horizontal test cryomodule
 - Horizontal Cryomodule Test Results (HTC-1 and HTC-2)
- Conclusions & Future Plans

Cornell ERL 7-cell Fabrication

- Fabricated with 85% field flatness
- CMM results show that we achieved ¼ mm shape precision after welding
- Tuned to 95% field flatness
- Received high-Q treatment

Horizontal Test Cryomodule

for first horizontal test

TTC2012

HTC Assembly

N. Valles - Design, fabrication, and high Q0 testing of the main linac cavity for the Cornell ERL

Central focus: Maximize threshold current through linac

- Center cell geometry
- End cell geometry
- Beam line HOM absorbers
- Fundamental power coupler design
- Simulate ERL performance with realistically shaped cavities

• Fabrication & Test Results

- Prototype cavity fabrication process
- Installation into horizontal test cryomodule

Horizontal Cryomodule Test Results (HTC-1 and HTC-2)

Conclusions & Future Plans

HTC-1 Results

Q vs Thermal Cycle

Final Q vs E Results

No HOM absorbing loads installed for second horizontal test

N. Valles - Design, fabrication, and high Q0 testing of the main linac cavity for the Cornell ERL

TTC2012

HTC-2 Results

Q vs E Results

- Initial Qs lower than HTC-1
- Thermal cycle to 15 K increased Qs
- Meets ERL specification

Thermal Cycling

Elimination of residual flux via thermal gradients for T < T_c

Impact of trapped flux and thermal gradients on the SRF cavity quality factor O. Kugeler, J. Vogt, J. Knobloch, S. Aull. IPAC12

• Thermal cycle increased center cell temp to 8.9 K

Comparison of HTC-2 low temp thermal cycle Q measurements

• No observed increase in Q after 8.9 K thermal cycle

- Central focus: Maximize threshold current through linac
 - Center cell geometry
 - End cell geometry
 - Beam line HOM absorbers
 - Fundamental power coupler design
- Simulate ERL performance with realistically shaped cavities
- Fabrication & Test Results
 - Prototype cavity fabrication process
 - Installation into horizontal test cryomodule
 - Horizontal Cryomodule Test Results (HTC-1 and HTC-2)
- Conclusions & Future Plans

Conclusions

- Successfully optimized cavity expected to achieve threshold currents between 300 – 500 mA under realistic conditions
 - Meets all optimization constraints
- Prototype ERL main linac 7-cell cavity has been fabricated
 - Exceeds very tight shape tolerance specifications
- **HTC-1:** The quality factor of the fundamental mode at 1.6 K has set a record for a multi-cell cavity installed in a horizontal cryomodule
 - Opens up the option to run at 1.6 K
- HTC-2: Quality factor, gradient specifications met
 - Investigations of benefits of thermal cycling suggest benefits occur in the 9.0 – 15 K range

Future Plans

- Preparations for HTC-3 underway. Two beamline HOM absorbers will be installed in the cryomodule
 - Scheduled for Spring 2013.
 - Tests will be run without beam
 - Tests in 2013 will include beam operation in Cornell ERL Injector which recently reached 65 mA CW.
- Six additional 7-cell cavities under fabrication
 - Vertical tests starting November 2012
 - Goal: produce a full cryomodule in 2013 (tested in 2014)

