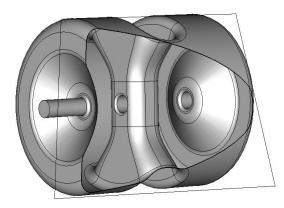
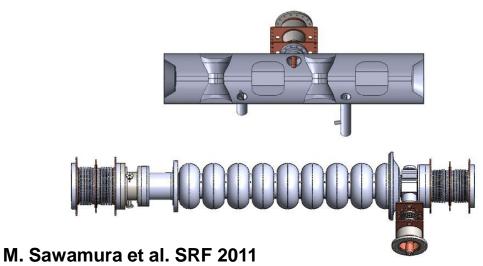
DEVELOPTMENT OF SUPERCONDUCTING SPOKE CAVITIES FOR HIGH-VELOCITY APPLICATIONS AT ODU

Christopher Hopper


Center for Accelerator Science Old Dominion University Department of Physics and Thomas Jefferson National Accelerator Facility

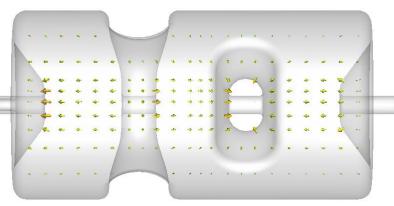


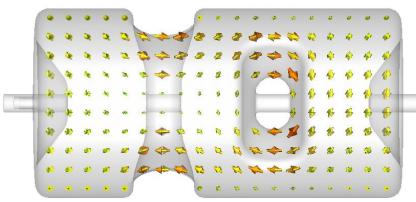
Features of Spoke Cavities

- Relative compactness
 - Between 20% 50% smaller (radially) then a TM cavity of the same frequency
- Strong cell-to-cell coupling
 - Robust with respect to manufacturing inaccuracy
 - No need for field flatness tuning
 - Closest mode well separated
- Low energy content, high shunt impedance
- Couplers located on outer conductor rather than in beamline space

325 MHz, $\beta_0 = 0.82$ single-spoke cavity

Applications


- Compact light sources
 - Lower frequency allows for 4 K operation
 - No sub-atmospheric cryogenic system
- High energy proton/ion linacs
- ERL combined with laser Compton scattering for nondestructive assay system for nuclear materials in spent fuel (JAEA)



Design Goals

Minimizing Peak Surface fields

Electric field- Create uniform distribution at aperture region



Magnetic field- Increase surface area of spoke base

Jefferson Lab

Maximize Shunt Impedance

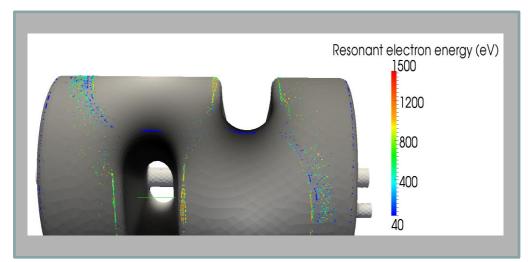
- Spoke base transverse to beam line
- Aperture width closer to base width
- Smaller end cone radius

Cavity Properties

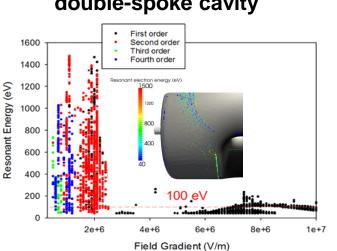
Cavity Parameters	$\beta_0 = 0.82$	$\beta_0 = 1.0$	Units
Frequency of accelerating mode	325	325	MHz
Frequency of nearest mode	333	329	MHz
Cavity diameter	627	640	mm
Iris-to-iris length	949	1148	mm
Cavity length	1149	1328	mm
Reference length	1140	1385	mm
Aperture diameter at spoke	60	60	mm
Cavity Parameters	$\beta_0 = 0.82$	β ₀ = 1.0	Units
Frequency of accelerating mode	352	352	MHz
Frequency of nearest mode	361	357	MHz
Cavity diameter	563	595	mm
Iris-to-iris length	869	1059	mm
Cavity length	1052	1224	mm
Reference length	1044	1277	mm
Aperture diameter at spoke	50	50	mm

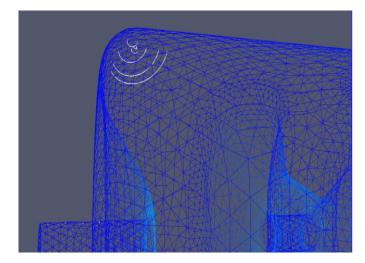
Cavity Properties

RF properties	325 MHz, $\beta_0 = 0.82$	$325 \text{ MHz},$ $\beta_0 = 1.0$	$352MHz, \\ \beta_0 = 0.82$	352 MHz, $\beta_0 = 1.0$	Units
	Low Ep,Bp	High R	Low Ep,Bp	High R	
Energy gain at β_0	1.140	1.385	1.044	1.277	MV
R/Q	625	744	630	754	Ω
G = QRs	168	195	169	193	Ω
(R/Q)*QRs	1.05x10 ⁵	1.45x10 ⁵	1.07x10 ⁵	1.46x10 ⁵	Ω^2
Ep/Eacc	3.9	4.2	4.1	4.1	-
Bp/Eacc	7.5	8.4	7.4	8.7	mT/(MV/m)
Bp/Ep	1.9	2.0	1.8	2.12	mT/(MV/m)
Energy Content	0.45	0.56	0.35	0.43	J
Power Dissipation*	0.37*	0.43*	0.33**	0.36**	W
At Eacc = 1 MV/m and *Rs = 68 nΩ	I reference length	(3/2)*β ₀ λ			
$**Rs = 73 n\Omega$					

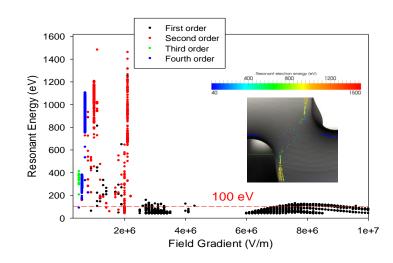


Comparison to TM Cavity


Cavity Parameters	352 MHz, β ₀ = 1.0 <i>Two-spoke</i>	$\begin{array}{l} 352 \text{ MHz,} \\ \beta_0 = 1.0 \\ \hline 3\text{-cell} \\ \textit{Elliptical} \end{array}$	Units	RF properties	352 MHz, β ₀ = 1.0 <i>Two-spok</i> e	352 MHz, β ₀ = 1.0 3-cell Elliptical	Units
Frequency of accelerating	352	352	MHz	Energy gain at β_0	1.277	1.277	MV
mode				R/Q	742	501	Ω
Frequency of nearest mode	357	350.7*, 351.3*	MHz	G = QRs	191	268	Ω
Cavity diameter	579	724	mm	(R/Q)*QRs	1.42x10 ⁵	1.34 x 10⁵	Ω ²
Iris-to-iris length	1057	1244	mm	Ep/Eacc	4.2	3.5	-
Cavity length	1237	1444	mm	Bp/Eacc	7.0	4.7	mT/(MV/m)
Reference	1277	1277	mm	Вр/Ер	1.7	1.34	mT/(MV/m)
length Aperture	50	100	mm	Energy Content	1	1.47	J
diameter at spoke				Power Dissipation*	0.37*	0.39*	W
*Lower order mod	les				//m and reference	e length (3/2)*β ₀ λ	

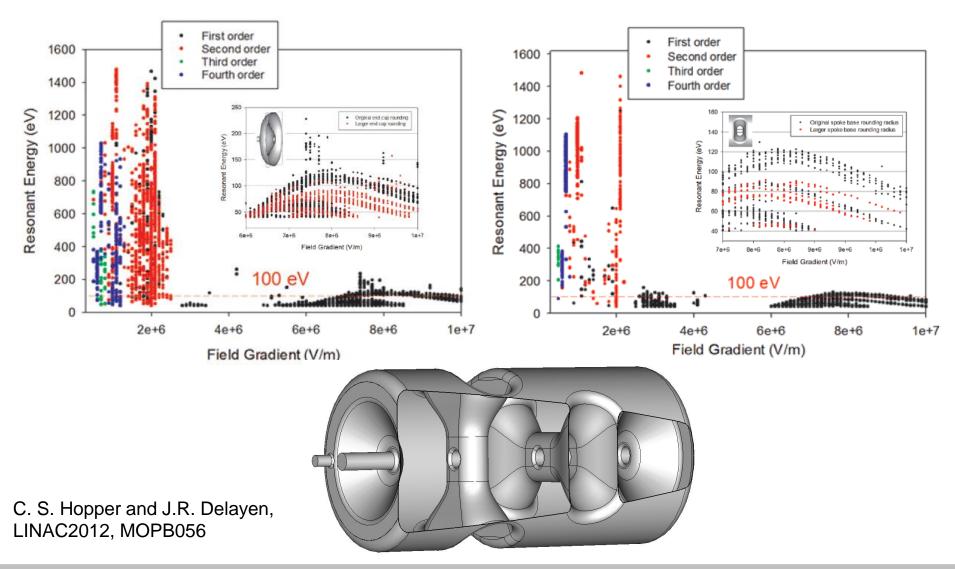


Multipacting

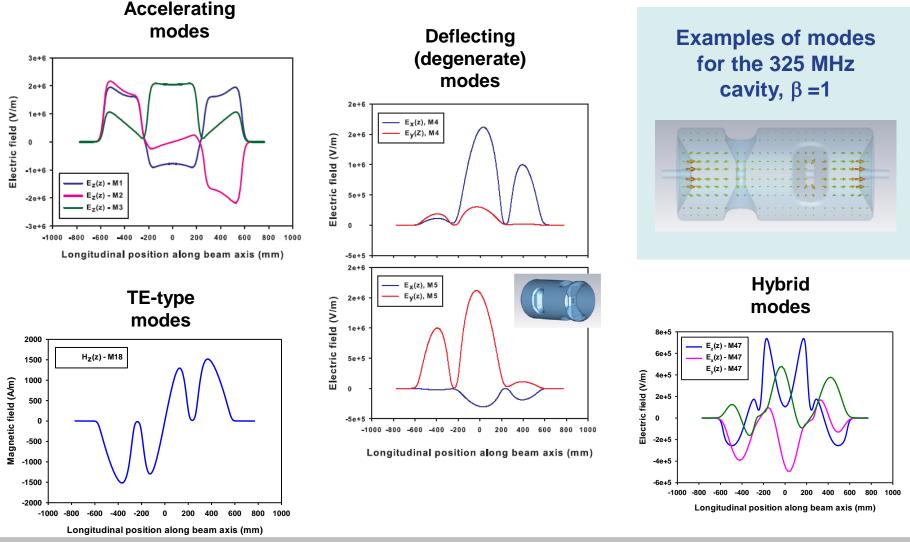


Multipacting sites, 325 MHz, $\beta_0 = 0.82$ double-spoke cavity

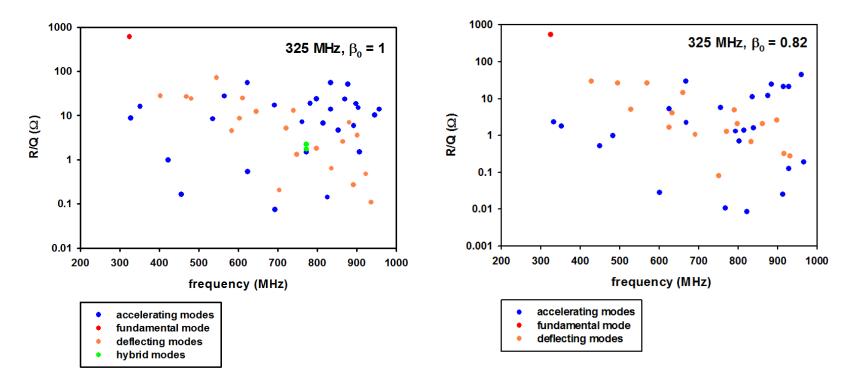
Two-point, first order multipacting



Simulations done with TRACK3P in the SLAC ACE3P code suite

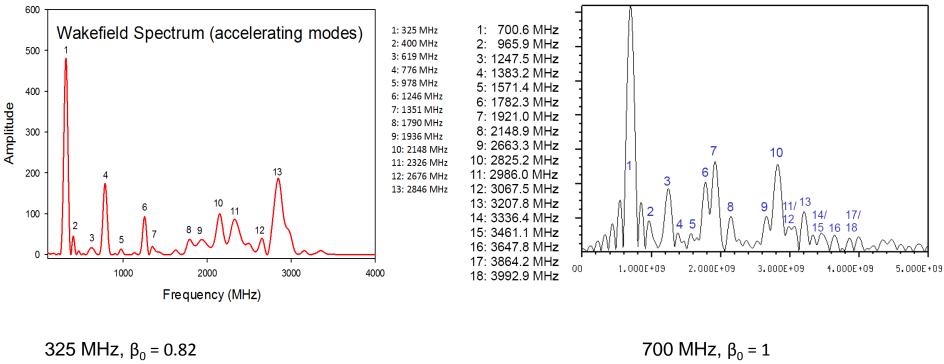

Multipacting

Higher Order Modes



R/Q Values of HOMs

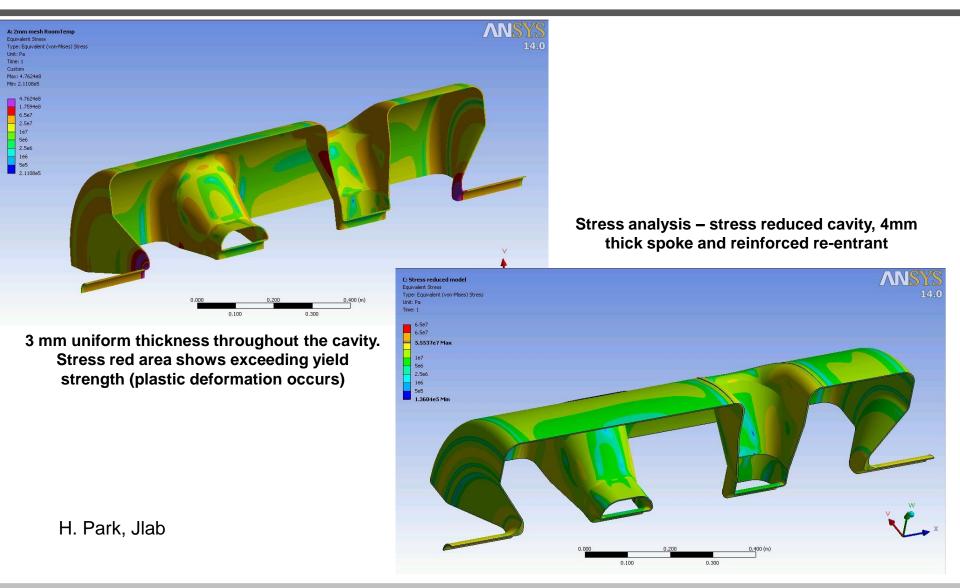
(R/Q) values for particles at design velocities $\beta_0 = 1$ and $\beta_0 = 0.82$ for the 325 MHz two-spoke cavity


C. S. Hopper, R.G. Olave, J.R. Delayen, IPAC2012, WEPPC103

HOMs have (R/Q)s significantly smaller than the fundamental mode

Excitation of Modes by a Single Bunch

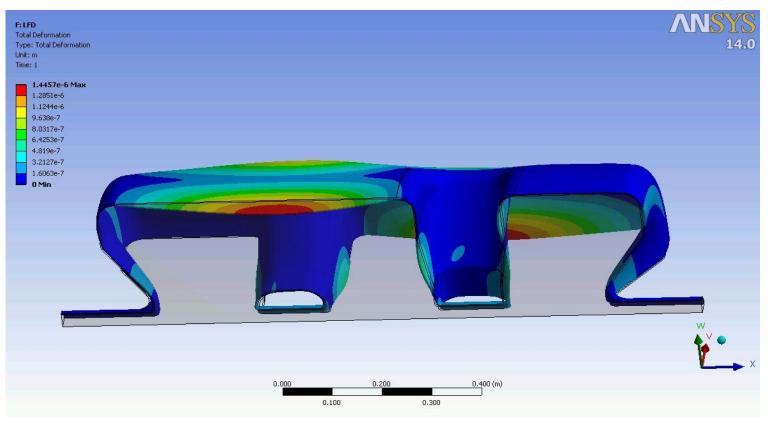
Single Gaussian bunch, on-axis, $\sigma = 1$ cm (bunch couples only to accelerating modes)


C. S. Hopper, ODU T3P in ACE3P code suite (SLAC)

Jefferson Lab

700 MHz, $\beta_0 = 1$ F. Krawczyk, LANL MAFIA

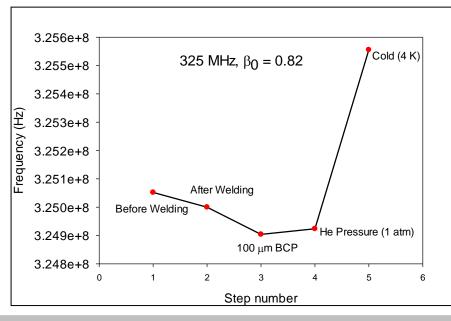
Mechanical Analysis



Jefferson Lab

Lorentz Force Detuning

Based on 1 J energy content 3mm uniform thickness throughout the cavity. Deformation scaled 24000X Frequency before detuning 325614592.8 Hz Frequency after detuning 325614219.8 Hz Frequency shift -373.0156525 Hz


H. Park, Jlab

Jefferson Lab

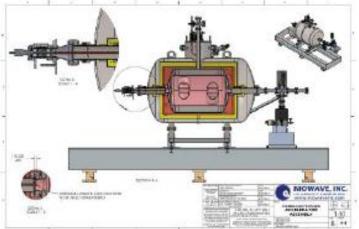
Frequency Shift by Process

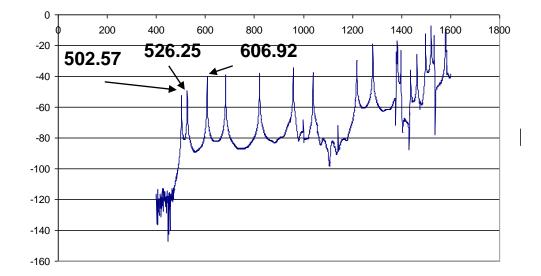
Process	Effect	Frequency (Initial design) (MHz)	Frequency (final design) (MHz)
(1) Cavity in parts (before welding)	+54000/+37000 Hz/mm	325.0520192	324.4965052
(2) Cavity welded	base freq	325.000000	324.444486
(3) BCP (100 micron)	-960 Hz/µm	324.904000	324.348486
(4) Vacuum load (1 atm, He pressure at 4K)	+26 Hz/torr	324.923760	324.368246
(5) Cooldown (4K)	+2186 Hz/K	325.555514	325.000000

Fabrication

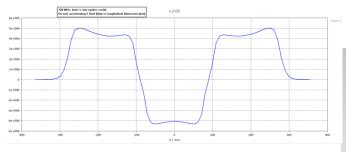
- 325 MHz, β = 0.82 and 1, single and double – Collaboration with JLab
- 352 MHz, $\beta = 0.82$ and 1, single and double
 - Collaboration with JLab
- 500 MHz, $\beta = 1$, double
 - Collaboration with Niowave
 - Collaboration with JLab

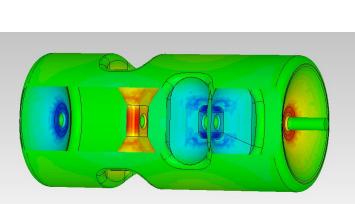
• 700 MHz, β = 1, single, double, and triple – Collaboration with Niowave, Los Alamos and NPS

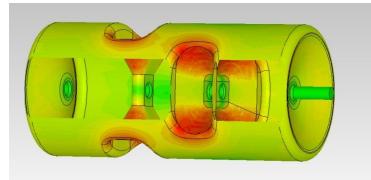



500 MHz, $\beta_0 = 1$

Subashini De Silva, ODU Dmitry Gorelov, Niowave Chase Boulware, Niowave Terry Grimm, Niowave






700 MHz, $\beta_0 = 1$, Double-Spoke

Collaboration between Niowave, ODU, Los Alamos, NPS Designed by ODU Fabricated by Niowave

Summary

- Interest in high-velocity single- and multi-spoke cavities has been increasing
- The spoke geometry has a number of attractive features
- Many prototypes have been, or are being, developed in many institutions
 300 to 850 MHz, β from < 0.2 to 1
- $\beta \sim 1$ spoke cavities have been built and are undergoing test
 - They may be the first ones to accelerate beam
 - The first particle to be accelerated by a spoke cavity will probably be an electron
- Currently beginning fabrication process for 325 MHz, $\beta_0 = 0.82$ single-spoke and 500 MHz, $\beta_0 = 1.0$ double-spoke cavities

Acknowledgements

- ODU
 - Subashini De Silva
 - Rocio Olave
- JAEA, Tokai
 Masaru Sawumara

- Los Alamos
 - Frank Krawczyk
- Niowave
 - Chase Boulware
 - Dmitry Gorelov
 - Terry Grimm

- Jlab
 - HeyKyoung Park

This work done at ODU towards the fulfillment of my Ph.D. under the supervision of Prof. Jean Delayen

