Outline

- Receiver Applications & Topology
- Conventional Analog Receiver
 - Digital Receiver
 - Digital Quadrature Sampler
 - Digital Processing
 - Digital LO Synthesis
- Applications
- Conclusion
Receiver Applications

- Wireless Voice Communication
 - Radio, Television
 - Cellular, PCS, Military Communication
 - Cordless Phones

- Wireless Data Communication
 - Bluetooth LANs

- GPS

- LLRF
 - RF Signal Measurement
 - Beam Signal Measurement
Digital Receiver Constellation

QAM Radio Reception using ZT400VXI
75 MHz IF, 500 MSPS, 12-Bit Digitizer
Receiver Topology

- Downconversion Mixer(s)
- Local Oscillator(s)
- Demodulator
 - I/Q, Amplitude/Phase, Amplitude
- Baseband Processor
 - Filtering, Synchronization, AGC, LLRF
Conventional Analog Receiver

Sources of Error

- **Conversion Loss Variation**
- **Amplitude Balance**
- **90° Phase Balance**
- **DC Noise and Offset Drift**
Digital Receiver

Sources of Error

- Reduced Conversion Loss Variation
- Perfect Amplitude Balance
- Perfect Phase Balance (at f_c)
- Zero DC Noise and Offset Drift
Digital Demodulator

Digital I/Q Demodulator

Direct I/Q Sampling
Direct I/Q Sampling Time Domain

ADC

1:2 DEMUX

 +/-1 MULTIPLIER

LO CLK

INPUT SIGNAL

SAMPLING: $f_s = 4 \times f_C$

DECIMATION BY 2

MULTIPLY BY +/- 1

DIGITAL FILTER
Direct I/Q Frequency Domain

(a) ADC
(b) DEMUX
(c) +/-1 MULTIPLIER
(d) +/-1 MULTIPLIER
(e) Q

INPUT SPECTRUM

(b) SAMPLING: \(f_s = 4 \times f_c \)

(c) DECIMATION BY 2

(d) MULTIPLY BY +/- 1

(e) DIGITAL FILTER
Under-Sampling Downconversion

(a) ADC

(b) SAMPLED IF

(c) LO CLK

IF

SAMPLED IF

LO CLOCK

IF INPUT

SAMPLED IF

$3f_s - f_c$ $f_c - 2f_s$ $4f_s - f_c$ $f_c - f_s$ $5f_s - f_c$ f_c
Direct I/Q Sampling Details

Sources of Error
- Quadrature Phase Errors Away From f_C
- Unaliased Data if $\Delta f < \pm f_S/8$
- Time Jitter \rightarrow Phase Error Relative to IF

Under-Sampling Sample Rates
- $f_S = 4f_C/(2n+1)$ where n is a positive integer

Analog-to-Digital Converters
- Analog Bandwidth $> f_C$
- Low Sampling Aperture Jitter
- Examples:
 - CLC5958, 52 MSPS, 14-Bit, 210 MHz
 - AD6644, 65 MSPS, 14-Bit, 250 MHz
 - AD9433, 125 MSPS, 12-Bit, 750 MHz
 - SPT7760, 1 GSPS, 8-Bit, 900 MHz
 - MAX108, 1.5 GSPS, 8-Bit, 2200 MHz
Digital Baseband Processing

Processing Functions
- Filtering – IIR, FIR, Matched Filters
- Decimation
- Carrier Recovery & Tracking
- Symbol Synchronization and Decoding
- Error Detection & Correction
- Automatic Gain Control
- Signal Measurement (E_b, Polar, FFT)
- Signal Modification (Control System)
Processing Device Comparison

![DEVICE COMPARISON](chart.png)

CPLD/FPGA
FIXED DSP
GENERAL DSP

- **SPEED**
- **FLEXIBILITY**
- **DENSITY**
- **LOW COST**
Digital Processing Devices

CPLD / FPGA
- Altera, Xilinx, Quick-Logic, Actel, etc.

Fixed-Purpose DSP
- HSP50210 – Digital Costas Loop
- HSP50110 – Digital Quadrature Tuner
- HSP43220 – CIC FIR Filter
- MAX2101 – Quadrature Digitizer
- AD6620 – Decimating Receiver
- CLC5902 – Digital Downconverter

General-Purpose DSP
- Texas Instruments, Analog Devices, etc.

Baseband Processors
- Philips, Intel, Motorola, Qualcomm, etc.
Digital LO Synthesis

LO Sinusoid for Downconversion Mixing
- Translates IF to Direct I/Q Sampling Frequency
- Must be Phase-Locked to Reference

LO Sampling Clock
- Direct I/Q Sampling Frequency
- Must be Phase-Locked to Reference

Reference Clock
- Must Be Integer Subharmonic of All LOs !!!
Synthesizer Topologies 1

Numerically Controlled Oscillator (NCO)

- **FREQ. REGISTER**
- **SINE ROM**
- **LO OUT**

Direct Digital Synthesizer (DDS)

- **FREQ. REGISTER**
- **SINE ROM**
- **DAC**
- **RECONSTRUCT FILTER**
- **LO OUT**
- **REF CLK**
Synthesizer Topologies 2

Phase Locked Loop (PLL)

DDS-Driven PLL
Synthesizer Topologies 3

DDS-Offset PLL

DDS Modulator
Synthesizer Devices

- ADF4113 – PLL, 4 GHz
- LMX2326 – PLL, 2.8 GHz
- MC12179 – PLL, 2.8 GHz
- SA8016 – PLL, 2.5 GHz
- MC145193 – PLL, 1.1 GHz
- TRF2050 – PLL, 1.1 GHz
- HSP45102 – NCO, 40 MHz
- AD9852 – DDS, 300 MHz
- ISL5314 – DDS, 125 MHz
- HSP45116 – NCO Modulator, 52 MHz
- AD9854 – DDS Modulator, 300 MHz
Digital Receiver Applications

Quadrature Demodulators
- SLAC 8-Channel I/Q Demodulator Module
 - Direct Quadrature Sampling
 - CIC-FIR Filter Fixed-Function DSP
- LANL Field Control Module
 - Direct Quadrature Sampling
 - CIC-FIR Filter Fixed-Function DSP
 - General Purpose TMS320C50 DSP

LO Synthesizer
- SLAC Clock Synthesizer Module
 - Triple PLL Synthesizer

Digital Radio
- SNL/LANL/Honeywell Telemetry Receivers
- LANL Underground Radio Transceiver
Conclusion

The Technology is Available Today for Implementing LLRF Systems using Digital Receivers, Processors, and Transmitters

Christopher Ziomek
ZTEC Inc.
6610 Gulton Court NE
Albuquerque, NM 87109
505-342-0132 x106
cziomek@ztec-inc.com