

The Coherent Λ-Σ Coupling in Light Hypernuclei

Yoshinori AKAISHI
Institute of Particle and Nuclear Studies, KEK

The Overbinding Problem

Y. Yamamoto, Phys. Rev. C65 (2001) 011301(R).

1+	
]	

300

BNL: (1998)

T. Nagae, R.E. Chrien et al., Phys. Rev. Lett. **80** (1998) 1605.

KEK: (1989)

R. Hayano et al., Phys. Lett. **231** (1989) 355.

Cancellation due to isospin

11.11. Gloridominig, / lonophys. c. 200 (1000) 170.

aryons in the medium carry the same Q.N.'s as in vacuum.

$$= 0$$

Phys. Rev.

$$=\frac{^{6}H}{^{\Lambda}}$$
+

 $\frac{d\sigma}{d\Omega}\Big|_{\theta=0} \text{(nb/sr)} \quad \text{at } p_{\pi} = 1.05 \,\text{GeV}/c$

Final n	ucleus	One-step	Two-step
	2-		66.8 Exceptionall large!
	1-		3.2
¹² _Λ Be 1⁻	1-	1.4	6.5
V pe	0+	0.1	2.1
¹⁶ ΛC 2 ⁺ 0 ⁺	0.3	0.4	
	0+	0.01	0.1

W₃=1.43 MeV

$$+\langle \psi_{\Lambda} V_{\Lambda \Sigma} \psi_{\Sigma} \rangle$$

$$-\langle \psi_{\Sigma} V_{\Sigma \Lambda} \psi_{\Lambda} \rangle + \langle \psi_{\Sigma} \psi_{\Sigma} \rangle \Delta M$$

 $P_{\Sigma}\Delta M$

$$\langle \Sigma, \Sigma \Lambda \rangle_{SC}$$

$$\frac{1}{V_{\Sigma}}V_{\Sigma\Lambda}\Psi_{\Lambda} = E\Psi_{\Lambda}$$

E. Hiyama et al. GVM (2001)

$$\Delta \tilde{E}_{2BF} = \begin{bmatrix} -\frac{1}{12}x_{t}^{2} - \frac{1}{12}x_{s}^{2} - \frac{1}{6}x_{t}x_{s} : 1^{+} \\ -\frac{3}{4}x_{t}^{2} - \frac{1}{12}x_{s}^{2} + \frac{1}{2}x_{t}x_{s} : 0^{+} \end{bmatrix}$$

$$\Delta \tilde{E}_{3BF} = \begin{bmatrix} -\frac{1}{6}x_{t}^{2} - \frac{1}{6}x_{s}^{2} - \frac{1}{3}x_{t}x_{s} : 1^{+} \\ -\frac{3}{2}x_{t}^{2} - \frac{1}{6}x_{s}^{2} + x_{t}x_{s} : 0^{+} \end{bmatrix}$$
Akaishi et al.

tial

$$\Delta \tilde{E}_{3BF}$$
 0+ -1.44 MeV + $\Delta \tilde{E}_{2BF}$ MeV

— Standard cooling (1.2 M_☉)

--- Pion cooling (1.4 M_@)
$$n + e^{-} \rightarrow \left\langle \pi^{c} \right\rangle + n + \nu_{e}$$

$$\left\langle \pi^{c} \right\rangle + n \rightarrow n + e^{-} + \overline{\nu}_{e}$$

RXJ 185 Sm "New form Stran (self-bou

