SU(3) Chiral Effective Field Theories — A Status Report —

B. Borasoy

TU München

October 17, 2003

Basic idea of an effective field theory

- treat active, light particles as collective degrees of freedom
- heavy particles are frozen and reduced to static sources

Dynamics are described by an effective Lagrangian which incorporates all relevant symmetries of the underlying fundamental theory

Chiral effective theory

- \bullet spontaneous chiral symmetry breaking leads to characteristic gap $\Delta \sim 1$ GeV in hadronic spectrum
- hadron physics at low energies $E \ll \Delta$ is governed by softest excitations of QCD vacuum, the 8 Goldstone bosons: pions (π) , kaons (K), eta (η)

Construct effective Lagrangian containing Goldstone bosons and incorporating symmetries and symmetry breaking patterns of QCD:

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\mathsf{sb}}$$

- ullet \mathcal{L}_0 invariant under chiral transformations $SU(3)_L imes SU(3)_R$
- \mathcal{L}_{sb} incorporates chiral symmetry breaking patterns due to non-zero quark masses (m_u, m_d, m_s) ; these are small \Rightarrow treat perturbatively
- ullet consequence of confinement: quarks and gluons do not show up as explicit degrees of freedom in ${\cal L}$

Construction of the chiral effective Lagrangian

8 Goldstone bosons most conveniently summarized in matrix $U(x) \in SU(3)$

$$U(x)=u^2(x)=\exp\left(irac{\sqrt{2}}{f_\pi}\phi(x)
ight).$$
 $f_\pi\simeq 93$ MeV, pion decay constant

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

The effective Lagrangian is a function of $U, \partial_{\mu}U$ and the quark mass matrix $\mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$.

$$\mathcal{L} = \mathcal{L}(U, \partial U, \partial^2 U, \dots, \mathcal{M})$$

Yields expansion in powers of \mathcal{M} and $\partial_{\mu}U$ \sim powers of meson momenta.

$$\mathcal{L}_0 = \mathcal{L}_0^{(2)} + \mathcal{L}_0^{(4)} + \dots$$

with (i) being i^{th} chiral order.

Leading term

$$\mathcal{L}_{0}^{(2)} = \frac{f_{\pi}^{2}}{4} \langle \partial_{\mu} U^{\dagger} \partial^{\mu} U \rangle$$

$$= \frac{1}{2} \langle \partial_{\mu} \phi \partial^{\mu} \phi \rangle + \frac{1}{12 f_{\pi}^{2}} \langle [\phi, \partial_{\mu} \phi] [\phi, \partial^{\mu} \phi] \rangle + \dots$$

At higher chiral orders new, additional coupling constants appear that need to be determined by experiment. \mathcal{L}_0 has the form of a Taylor expansion.

Explicit chiral symmetry breaking due to quark masses

$$\mathcal{L}_{\mathsf{sb}} = \mathcal{L}_{\mathsf{sb}}^{(2)} + \mathcal{L}_{\mathsf{sb}}^{(4)} + \dots$$

with the leading term

$$\mathcal{L}_{\mathsf{sb}}^{(2)} = B_0 \frac{f_\pi^2}{2} \langle \mathcal{M}(U + U^\dagger)
angle$$

Inclusion of Baryons

Ground state SU(3) baryon octet

$$B = egin{pmatrix} rac{1}{\sqrt{2}}\Sigma^0 + rac{1}{\sqrt{6}}\Lambda & \Sigma^+ & p \ \Sigma^- & -rac{1}{\sqrt{2}}\Sigma^0 + rac{1}{\sqrt{6}}\Lambda & n \ \Xi^- & \Xi^0 & -rac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

Lagrangian is extended to include baryons

$$\mathcal{L} = \mathcal{L}(U, \partial U, \dots, B, \partial B, \dots, \mathcal{M})$$

At leading order

$$\mathcal{L}_{\phi B}^{(1)} = i \langle \bar{B} \gamma_{\mu} D^{\mu} B \rangle - M_{0} \langle \bar{B} B \rangle - \frac{i}{2} D \langle \bar{B} \gamma_{\mu} \gamma_{5} \{ u^{\mu}, B \} \rangle - \frac{i}{2} F \langle \bar{B} \gamma_{\mu} \gamma_{5} [u^{\mu}, B] \rangle$$

 M_0 octet baryon mass in chiral limit, $\mathcal{M}=0$.

D, F: axial vector couplings.

Determined from hyperon beta decays:

$$D \approx 0.80, \qquad F \approx 0.46$$

Inclusion of external vector and axial vector fields:

Chiral Symmetry is treated as a local symmetry.

Replace partial derivative ∂_{μ} by gauge covariant derivatives which involve external vector (v_{μ}) and axial vector (a_{μ}) fields.

$$egin{aligned} {\sf Baryons:} & \partial_{\mu}B o D_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu},B] \ & \Gamma_{\mu} = rac{1}{2}[u^{\dagger},\partial_{\mu}u] - rac{i}{2}(u^{\dagger}r_{\mu}u + ul_{\mu}u^{\dagger}) \ & r_{\mu} = v_{\mu} + a_{\mu} \; , \qquad l_{\mu} = v_{\mu} - a_{\mu} \end{aligned}$$

Mesons:
$$\partial_\mu U \to \nabla_\mu U = \partial_\mu U - i r_\mu U + i U l_\mu$$

$$u_\mu = i u^\dagger \nabla_\mu U \, u$$

Expand u_{μ} in meson fields

$$u_{m{\mu}} = -rac{\sqrt{2}}{f_{\pi}}\partial_{m{\mu}}\phi - 2ia_{m{\mu}} + \ldots$$

Yields (in the chiral limit) generalized Goldberger-Treiman relations, e.g., $(g_A^{pn}=D+F=1.26)$

$$g_{\pi NN} = rac{g_A^{pn} M_N}{f_\pi}$$
 agreement better than 2%

Inclusion of baryons introduces a new scale, M_0 ,

$$rac{M_0}{\Lambda_\chi} \sim 1 \qquad \Lambda_\chi = 4\pi f_\pi \sim 1.2 {\sf GeV},$$

 Λ_{χ} : scale of spontaneous chiral symmetry breaking

- \Rightarrow chiral counting scheme, *i.e.* higher loops correspond to higher chiral powers, is spoilt
- Can be reestablished by considering the fermions to be very heavy (nonrelativistic framework of **heavy baryon ChPT**)

 (Jenkins, Manohar '91)
- or: evaluate loops in relativistic framework with **infrared regularization**, isolating infrared singularities due to Goldstone boson masses

(Ellis, Tang '98, Becher, Leutwyler '99)

Inclusion of strange quarks

Is the strange quark light?

Current quark masses at $\mu=2$ GeV in $\overline{\mbox{MS}}$

$$m_u$$
= $1.5-4.5$ MeV m_d = $5-8.5$ MeV m_s = $80-155$ MeV

- $ullet m_u, m_d$ light compared to any hadronic scale, e.g., $m_u, m_d \ll \Lambda_{QCD} \sim 150$ MeV
- ullet On the other hand: $m_s \sim \Lambda_{QCD}$... Convergence of chiral series ???
- ullet Alternatively, treat m_s as heavy state and integrate out
 - a) $\Rightarrow SU(2)$ ChPT
 - b) \Rightarrow heavy kaon ChPT, expansion parameter $\frac{m_\pi^2}{m_K^2}$

Baryon masses

At next-to-leading order quark masses enter:

$$\mathcal{L}_{\phi_{\mathsf{B}}}^{(2)} = 4B_0b_0\langle \bar{B}B\rangle\langle \mathcal{M}\rangle + 4B_0b_D\langle \bar{B}\{\mathcal{M},B\}\rangle + 4B_0b_F\langle \bar{B}[\mathcal{M},B]\rangle$$

 b_0, b_F, b_D unknown parameters. To be determined from experiment.

Mass splittings of the baryon octet at leading order in symmetry breaking

(Work in limit $m_u=m_d$: \Rightarrow 4 different baryon masses $M_N, M_\Lambda, M_\Sigma, M_\Xi$)

$$egin{aligned} M_N &= ilde{M}_0 - 4 m_K^2 b_D + 4 (m_K^2 - m_\pi^2) b_F \ M_\Lambda &= ilde{M}_0 - rac{4}{3} (m_K^2 - m_\pi^2) b_D \ M_\Sigma &= ilde{M}_0 - 4 m_\pi^2 b_D \ M_\Xi &= ilde{M}_0 - 4 m_K^2 b_D - 4 (m_K^2 - m_\pi^2) b_F \end{aligned}$$

Effective field theories 10

4 octet baryon masses are represented in terms of effectively 3 parameters

⇒ Sum Rule (Gell-Mann and Okubo)

$$M_\Sigma-M_N=rac{1}{2}(M_\Xi-M_N)+rac{3}{4}(M_\Sigma-M_\Lambda)$$

Experimentally:

$$254 \text{ MeV} = 248 \text{ MeV}$$

Satisfied at the 3% level.

Let's go to higher chiral order:

Chiral expansion of masses

$$M_B = M_0 + \sum_q b_q m_q + \sum_q c_q m_q^{3/2} + \sum_q d_q m_q^2 + \ldots$$
 (LNAC)

• Complete one-loop calculation in heavy baryon approach to 4^{th} chiral order $(m_u = m_d)$ (BB, Meißner '97)

$$M_N = M_0(1 + 0.34 - 0.35 + 0.24)$$
 $M_\Lambda = M_0(1 + 0.69 - 0.77 + 0.54)$
 $M_\Sigma = M_0(1 + 0.81 - 0.70 + 0.44)$
 $M_\Xi = M_0(1 + 1.10 - 1.16 + 0.78)$

$$p^2$$
 p^3 p^4

Large nonanalytic terms at $\mathcal{O}(p^3)$ arise from the integral

$$\int \frac{d^4k}{(2\pi)^4} \, \frac{k_i k_j}{[k_0 + i\epsilon] \, [k^2 - m^2 + i\epsilon]} = i \delta_{ij} \frac{I(m)}{24\pi}$$

• In dimensional regularization: $I_{dim.reg.}(m) = m^3$ \Rightarrow large loop contributions

 $\underline{\text{But:}}$ baryons are treated as point like particles, although they have a finite size ~ 1 fm

• Suppress short distance portion of loop integral which is not described appropriately by chiral physics

Utilize, e.g., simple dipole regulator (Donoghue, Holstein, BB '98)

$$\left(\frac{\Lambda^2}{\Lambda^2-k^2}\right)^2$$

Regulator suppresses short-distance physics. One obtains

$$I_{\Lambda}(m)=\Lambda^4rac{2m+\Lambda}{2(m+\Lambda)^2}$$

- ullet Power divergences $\propto \Lambda^3$ and Λ can be absorbed into M_0 and b_0,b_D,b_F
- \Rightarrow chiral symmetry is maintained

Nonanalytic contributions (in GeV) to baryon masses

	dim. reg.	$\Lambda=300~{ m MeV}$	$\Lambda=400\;MeV$
N	-0.31	0.02	0.03
Λ	-0.66	0.03	0.06
Σ	-0.62	0.03	0.05
[1]	-1.03	0.04	0.08

Phenomenologically relevant cutoffs

$$rac{1}{\langle r_B
angle} \leq \Lambda \sim ~300~-~600~{\sf MeV}$$

σ terms

$$\sigma_{\pi N}(t) = rac{1}{2}(m_u + m_d)\langle p'|ar{u}u + ar{d}d|p
angle \ \sigma_{KN}^{(1)}(t) = rac{1}{2}(\hat{m} + m_s)\langle p'|ar{u}u + ar{s}s|p
angle \ \sigma_{KN}^{(2)}(t) = rac{1}{2}(\hat{m} + m_s)\langle p'| - ar{u}u + 2ar{d}d + ar{s}s|p
angle \ .$$

with

$$t \equiv (p'-p)^2, \qquad \hat{m} \equiv \frac{1}{2}(m_u+m_d)$$

Empirical value deduced from extrapolation of low-energy pion nucleon scattering data (Gasser, Leutwyler, Sainio '91)

$$\sigma_{\pi N}(0) = (45 \pm 8) \text{MeV}$$

• Strangeness contribution to nucleon mass:

$$m_s \langle p | \bar{s}s | p \rangle = \left(\frac{1}{2} - \frac{m_\pi^2}{4m_K^2}\right) \left(3\sigma_{KN}^{(1)}(0) + \sigma_{KN}^{(2)}(0)\right) + \left(\frac{1}{2} - \frac{m_K^2}{m_\pi^2}\right) \sigma_{\pi N}(0)$$

• Strangeness fraction

$$y = rac{2\langle p|ar{s}s|p
angle}{\langle p|ar{u}u + ar{d}d|p
angle}$$

To leading order in quark masses and using SU(3) baryon wave functions $(m_s/\hat{m}\sim 25)$

$$\sigma_{\pi N}(0) = \frac{\hat{m}}{m_s - \hat{m}} \frac{M_{\Xi} + M_{\Sigma} - 2M_N}{1 - y}$$
$$= \frac{26 \text{ MeV}}{1 - y} \qquad \Rightarrow \qquad \boxed{y = 0.42}$$

Two orders higher in the chiral expansion (BB, Meißner '97)

$$\sigma_{\pi N}(0) = \frac{(36 \pm 7) \text{MeV}}{1 - y}$$
 \Rightarrow $y = 0.2 \pm 0.2$

Compatible with zero but tendency for non-zero admixture of strange quarks in the nucleon.

But: new πN scattering data from TRIUMF and PSI became available

More recent extractions of $\sigma_{\pi N}(0)$ range from

$$\sigma_{\pi N}(0) = 45 \dots 80 \text{ MeV}$$

corresponding to a strangeness fraction

$$y = 0.2 \dots 0.5$$
 !!

• Results for $KN \sigma$ terms (in cutoff scheme) (BB '99)

$$\sigma_{KN}^{(1)}(0) = 380 \pm 50 \; ext{MeV}$$
 $\sigma_{KN}^{(2)}(0) = 250 \pm 40 \; ext{MeV}$ $y = 0.25 \pm 0.05$ $m_s \langle p | ar{s} s | p
angle = 150 \pm 50 \; ext{MeV}$

Axial vector couplings

Hadronic axial current for the semileptonic decay $B_i o B_j l \bar{\nu}_l$ can be written in the form

$$\langle B_j | A_\mu | B_i
angle = ar{u}(p_j) \Big(g_1(q^2) \gamma_\mu \gamma_5 - rac{i g_2(q^2)}{M_i + M_j} \sigma_{\mu
u} q^
u \gamma_5 + rac{g_3(q^2)}{M_i + M_j} q_\mu \gamma_5 \Big) u(p_i)$$

• Axial vector couplings: $g_A \equiv g_1(0)$

Axial vector couplings D,F in $\mathcal{L}_{\phi B}^{(1)}$ provide good fit to experimentally measured g_A : $D=0.80,\ F=0.46$

SU(3) breaking effects in data < 10%.

$$g_A^{pn} = D + F = 1.26 \qquad (1.267)$$

$$g_A^{p\Lambda} = -\frac{1}{\sqrt{6}}(D + 3F) = -0.89 \quad (-0.89)$$

$$g_A^{\Lambda\Sigma^-} = \frac{2}{\sqrt{6}}D = 0.65 \qquad (0.60)$$

$$g_A^{\Xi^0\Xi^-} = D - F = 0.34$$

$$g_A^{\Lambda\Xi^-} = -\frac{1}{\sqrt{6}}(D - 3F) = 0.24 \quad (0.30)$$

$$g_A^{n\Sigma^-} = D - F = 0.34 \qquad (0.34)$$

$$g_A^{\Sigma^0\Xi^-} = \frac{1}{\sqrt{2}}(D + F) = 0.89 \qquad (0.93)$$

- LNACs from chiral loops lead to significant SU(3) breakingin disagreement with experiment (Bijnens, Sonoda, Wise '85)
- \bullet Employ cutoff regularization (absorbing power divergences $\propto \Lambda$ into phenomenological parameters D,F)
- ⇒ chiral corrections are under control

(Donoghue, Holstein, BB '97)

ullet Nonanalytic corrections to g_A

	dim. reg.	$\Lambda=300~{ m MeV}$	$\Lambda=400~{ m MeV}$
g_A^{pn}	0.92	0.20	0.28
$g_A^{p\Lambda}$	-0.95	-0.18	-0.27
$g_A^{\Lambda\Sigma^-}$	0.62	0.12	0.18
$g_A^{n\Sigma^-}$	0.19	0.04	0.05
$g_A^{\Lambda\Xi^-}$	0.44	0.08	0.12
$g_A^{\Sigma^0\Xi^-}$	1.44	0.21	0.31

Nonleptonic weak hyperon decays

Dominant hadronic decay mode of hyperons: $B \rightarrow B'\pi$

There are seven such decays

$$egin{array}{lll} \Lambda
ightarrow \pi^0 n, & \Lambda
ightarrow \pi^- p \ \Sigma^+
ightarrow \pi^+ n, & \Sigma^+
ightarrow \pi^0 p, & \Sigma^-
ightarrow \pi^- n \ \Xi^0
ightarrow \pi^0 \Lambda, & \Xi^-
ightarrow \pi^- \Lambda \end{array}$$

Matrix element:

$${\cal A}(B o B'\pi)=ar u_{B'}(p')(A+B\gamma_5)u_B(p)$$

A: parity-violating s wave

B: parity-conserving p wave

$\Delta I = 1/2$ rule:

 $\Delta I=3/2$ amplitudes are suppressed with respect to $\Delta I=1/2$ counterparts by a factor of twenty or so (also in kaon nonleptonic decays)

Still no simple explanation for its validity available

- ullet Isopsin symmetry of strong interactions implies three relations for s and p waves
- ⇒ 8 independent decay amplitudes

ullet s and p wave problem:

Chiral effective field theory at tree level

Lowest order weak Lagrangian:

$$\mathcal{L}_{W}^{(0)} = d_{W} \langle ar{B} \{ u^{\dagger} \lambda_{6} u, B \}
angle + f_{W} \langle ar{B} [u^{\dagger} \lambda_{6} u, B]
angle$$

s wave amplitudes

p wave amplitudes

No simultaneous fit to both s and p waves possible

- ullet good s wave fit possible, but poor p wave description
- -> Include chiral corrections
- (Bijnens, Sonoda, Wise '85): leading nonanalytic corrections to both s and p waves do not agree with data
- (Jenkins '92): inclusion of decuplet fields within heavy baryon formulation

s waves: good agreement

p waves:

no satisfactory description

Effective field theories 21

• (BB, Holstein '99): complete one-loop calculation Introduces more coupling constants than there exist data Reduce number of counterterms by resonance saturation principle

- ⇒ Exact fit possible, but not unique
- \bullet (Le Yaouanc et al. '79): possible solution to s and p wave problem

Appending pole contributions from SU(6) $(70,1^-)$ states to s waves within a constituent quark model appears to provide a possible resolution of the s and p wave dilemma

 Consider validity of this approach within the framework of ChPT (BB, Holstein '99)

Tree level results and contributions from lowest

$$1/2^ (\Lambda(1405), N(1535), ...)$$
 and $1/2^+$ $(N(1440), ...)$ resonances

⇒ satisfactory picture of nonleptonic hyperon decays can be provided

 Importance of final state interactions has been investigated within a chiral unitary approach based on coupled channels (BB, Marco '03)

 Resonances are not included explicitly, they are generated dynamically \bullet Phase shifts of πN scattering are reproduced at the relevant energies

⇒ accurate inclusion of final state interactions

Observations:

FSI have sizeable effects > 10% and should not be omitted

Inclusion of FSI improves overall lowest order fit to data But: does not enable a reasonable fit

⇒ importance of higher order weak counterterms which include effects from higher energies

Nonleptonic radiative hyperon decays

The weak radiative hyperon decays

$$\begin{split} \Sigma^+ &\to p \gamma, \quad \Sigma^0 \to n \gamma, \quad \Lambda \to n \gamma \\ \Xi^0 &\to \Sigma^0 \gamma, \quad \Xi^0 \to \Lambda \gamma, \quad \Xi^- \to \Sigma^- \gamma \end{split}$$

are described by

$$egin{align} \mathcal{A}(B o B'\gamma) &= -rac{i}{2(M_B+M_{B'})} \ & imes ar{u}_{B'}(p')\sigma_{\mu
u}F^{\mu
u}(A_{B'B}+B_{B'B}\gamma_5)u_B(p) \ \end{matrix}$$

A: parity-conserving M1 amplitude

 $B: \mathsf{parity} ext{-violating } E1$ amplitude

Hara's theorem:

In SU(3) limit $B_{B'B}$ must vanish for decays between states of common U-spin multiplet $(s \leftrightarrow d)$: $\Sigma^+ \to p\gamma$, $\Xi^- \to \Sigma^-\gamma$

ullet Real $World: \sim 20\%$ SU(3) breaking effects are expected

$$\Rightarrow$$
 small photon asymmetry $\alpha \equiv -\frac{2 \mathrm{Re} A^* B}{|A|^2 + |B|^2}$

But:
$$\alpha_{\Sigma^+p} = -0.76 \pm 0.08$$
 $(\alpha_{\Xi^-\Sigma^-} = 1.0 \pm 1.3)$

• At lowest order in ChPT: Pole diagrams

- ullet Parity-violating amplitude B vanishes
- \Rightarrow asymmetry parameter $\alpha = 0$ for all decays
- one-loop calculation (Neufeld '93)

$$|\alpha_{\Sigma^+ p}| \le 0.21 \qquad !!$$

• Quark model (Gavela et al. '81)

Inclusion of $(70,1^-)$ states provided a solution for the problem with Hara's theorem

• Chiral framework (BB, Holstein '99)

Lowest $1/2^-$ and $1/2^+$ resonant contributions yield relatively large asymmetries (no additional unknown parameters)

Summary

- SU(3) ChPT is an appropriate tool to investigate properties and decays of hyperons (also: hyperon polarizabilities, hypernuclear decay, kaon photoproduction)
- convergence problems of chiral series due to strange quark mass can be overcome by utilizing a cutoff regularization
- extraction of $\sigma_{\pi N}(0)$ from πN scattering data will help to provide a more precise value of the strangeness content of the nucleon
- despite a few promising investigations, the problems related to the s and p wave description of nonleptonic hyperon decays and Hara's theorem for radiative hyperon decays still lacks a definite solution
 - ⇒ importance of resonances and physics at energies beyond the range of ChPT
- $not\ discussed$: importance of decuplet states $(\Delta(1232),\Sigma(1385),\Xi(1530),\Omega(1672))$
 - \Rightarrow combined $1/N_c$ and chiral expansions (Jenkins, Manohar, Lebed)