## Spin, Parity & Width

Spin is currently unknown - the theoretical prejudice is \_.

Parity is currently unknown

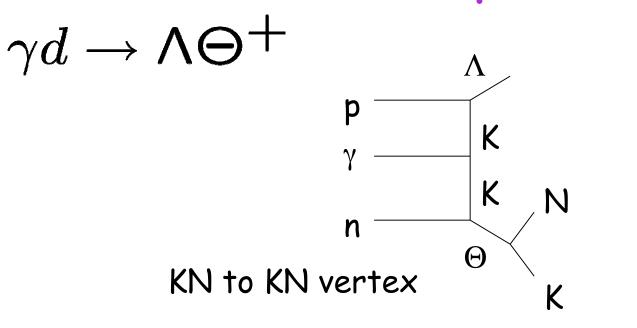
- the theoretical prejudice is +

Width is not known. We have seen numbers ranging from upper limits of 9-20 MeV from observation experiments, down to under 1MeV from a reanalysis of old K<sup>+</sup>d scattering data.

Isospin is not currently known, but the evidence is Pointing toward zero.

#### JLab Hall A Bogdan Wojtsekhowski:

Using different combinations of detectors in Hall A, including a new "low resolution device, one can produce and detect the  $\Theta^+$  in electron scattering experiments. Experiments can measure the  $\Theta^+$  in both "missing mass" and in "invariant mass".  $D(e, e'K^-p_s)\Theta^+$ 


$$D(e, K^{-}\Theta^{+})e'p \ \Theta \to K^{+}n$$
  
$${}^{3}\vec{He}(e, K^{-}\Theta^{+})e'pp \ \Theta \to K^{+}n$$

Can measure the width to 2-4 MeV.

## JLab Hall A

It may also be possible to measure the spin and parity of the theta in one of the production experiments. by taking advantage of moderate angular coverage of the a spectrometer setting, and looking for interference between the s-wave background and the narrow  $\Theta$ .

Related reaction as reported by GRAAL



## K<sup>+</sup>d Scattering

Shmuel Nussinov:

the best limit on the width comes from K+d scattering Data. A careful re-measure of this scattering cross-section Near the  $\Theta^+$  is likely to produce the best measure of the Width.

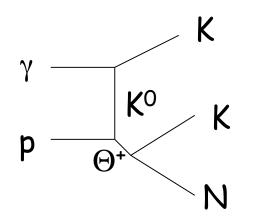



Diagram cannot be important unless  $\Gamma_{\Theta}$  > 10-20 MeV

# Parity of the $\Xi$

Look at the decay of the exotic \Xi states to both The  $\Xi(1320)$  and the  $\Xi(1530)$ . The relative rates Can feed back to information on the parity of the  $\Xi$ .

 $\Xi ! \Xi (1320) \pi$  Q~400  $\Xi ! \Xi (1530) \pi$  Q~200

- $J^{P}=(1/2)^{(-)}$  L=0 L=2
- $J^{P}=(1/2)^{(+)}$  L=1 L=1

Similarly, what is the ratio of  $\Gamma_{\Xi}$ :  $\Gamma_{\Theta}$ 

# K<sup>+</sup>d scattering

Carry out a 2-body low energy Kaon scattering experiment at BNL.

$$\begin{array}{rccc} K^+d & \to & \Theta^+p \\ K^+p & \to & \Theta^+\pi^+ \\ \pi^-p & \to & \Theta^+K^- \end{array} \end{array}$$

All of these reactions have the property that  $\Delta L$  between the initial and final state depends on the parity of the  $\Theta$ . It is odd for one choice and even for the other.