Θ^{+}production in photon-nucleon and meson-nucleon reactions

Yongseok Oh

 (Yonsei Univ., Korea and JLab)YO, Hungchong Kim, Su Houng Lee, hep-ph/0310019 (PRD in press), hep-ph/0310117, hep-ph/0311054

Searching for Pentaquarks

- Light pentaquarks (qqqq${ }^{-} \bar{s} \quad q=u, d$
quark models, $\mathrm{Y}=2$ exotics (1960's)
1970-1980's: KN scattering for Z* (Golowich, PDG 86, ...)
Soliton models: Diakonov, Petrov, Polyakov, Chemtob, Praszalowicz etc
2003: LEPS of Spring-8, first discovery of pentaquark, Θ^{+}(1540) (PRL 91, 012002)
Confirmed by CLAS, DIANA, SAPHIR, HERMES, etc.
NA49: $\Xi^{*-(1862) ~-~ a n o t h e r ~ e x o t i c ~ s t a t e ~}$
- Heavy pentaquarks ($q q q q \nwarrow \quad q=u, d, s$

1987: quark models (Lipkin, Gignoux, Silvestre-Brac, Richard, ...) $\quad P_{\overline{\mathrm{Q}}} \quad P_{\overline{\mathrm{Q}}}$
1990's: soliton model (Helsinki, Seoul, Syracuse, ...)
Stable against strong decays? (mass < DN, D s threshold)
1998: E791 of Fermilab, search for $P_{c s}(2750-2860)$ by weak decays into $\phi \pi p, K^{*} K p$ (PRL 81, 44): no evidence

Many works on N^{*} for crypto-exotic pentaquark states (meson-nucleon quasi-bound states)
Manycalculations in various models

Pentaquark states $\left(q^{4}-\bar{q}\right)$ in $\operatorname{SU}(3)$

Multip. \#

$351 \quad \mathrm{I}=2 \Theta$ and $\mathrm{I}=5 / 2,3 / 2 \mathrm{~N}^{*}(\mathrm{~J}=5 / 2 ?)$

\oplus| | | |
| :--- | :--- | :--- |
| | | |

273
$I=1 \Theta$ and $I=3 / 2,1 / 2 N^{*}(J=3 / 2 ?)$
\oplus

$10 \quad 4$

\oplus| | | |
| :--- | :--- | :--- |
| | | |

\oplus| | |
| :--- | :--- |
| | |
| | |

\oplus

$\overline{10}$

2

$$
\mathrm{I}=0 \Theta \text { and } \mathrm{I}=1 / 2 \mathrm{~N}^{*}(\mathrm{~J}=1 / 2 ?)
$$

$8 \quad 8$

13

> Cf. Θ has $Y=2$ N^{*} has $Y=1$

Pentaquarks as anti-decuplet

Θ
N_{10}
Σ_{10}
Ξ_{10}

T^{333}	$\mathrm{Y}=2$	$\mathrm{I}=0$	Θ
$\mathrm{~T}^{133}, \mathrm{~T}^{233}$	$\mathrm{Y}=1$	$\mathrm{I}=1 / 2$	$\mathrm{~N}_{10}$
$\mathrm{T}^{113}, \mathrm{~T}^{123}$, T^{223}	$\mathrm{Y}=0$	$\mathrm{I}=1$	Σ_{10}
$\mathrm{T}^{111}, \mathrm{~T}^{112}$, $\mathrm{T}^{122}, \mathrm{~T}^{222}$	$\mathrm{Y}=-1$	$\mathrm{I}=3 / 2$	Ξ_{10}

$\Theta^{+}(1540)$: observed by LEPS, CLAS, SAPHIR, DIANA, etc
$\Xi_{3 / 2}^{--}(1862)$ observed by NA49 and ??
Equal-spacing rule in anti-decuplet from GMO mass formula
mixing with pentaquark octet? $\quad N(1440)$ and $N(1710)$ (?) Jaffe-Wilczek
Cf: $\mathrm{N}(1440) \sim$ oN quasi-bound state: Juelich Group in πN scattering,

SU(3) symmetric Lagrangian

1.Baryon anti-decuplet - meson octet - baryon octet

$$
\mathcal{L}=-i g \overline{T^{j k l}} \gamma_{5} P_{m}^{j} B_{n}^{k} \varepsilon^{l m n}+\text { h.c. } \begin{aligned}
& \mathrm{T}: \text { baryon anti-decuplet } \\
& \\
& \\
& \mathrm{P}: \text { meson octet } \\
& \mathrm{B}: \text { baryon octet }
\end{aligned}
$$

2.Baryon anti-decuplet - meson octet - baryon anti-decuplet

$$
\mathcal{L}=g^{\prime} \overline{T^{j k l}} P_{m}^{j} T^{m k l}
$$

3.Baryon anti-decuplet - meson octet - baryon decuplet

Not allowed since $\quad 8 \otimes 10=35 \oplus 27 \oplus 10 \oplus 8$. Thus the N_{10} cannot decay into $\pi \Delta$

$$
\mathrm{BR}[\mathrm{~N}(1710)->\Delta \pi]=15-40 \% \text { (PDG) }
$$

U-spin conservation \mapsto the N_{10} can be produced by γ n but not by γp

$\gamma \mathrm{N} \mapsto \mathrm{K} \Theta$

Quantum numbers of the $\Theta^{+}(1540)$:
(1) I $=0$ if $\Theta(1540)$ belongs to anti-decuplet
(2) Spin? - most models predict $1 / 2$
(3) Parity?

- lattice, QCD sum rules \mapsto odd parity
- quark models with orbital motion, soliton models \mapsto even parity

Soliton models for heavy pentaquark gives
$1 / 2^{+}$. ground state
$1 / 2$ - first excited state
$\mathrm{I}=1,2$: higher states
we first assume $\mathrm{I}=0$ and $\mathrm{J}^{\mathrm{P}}=1 / 2^{+}$for $\Theta^{+}(1540)$.

$\gamma \mathrm{n} \mapsto \mathrm{K} \Theta$

(a)
(c)

(b)

(d)

Other resonances: Δ (no), N_{10} (yes), others....

$\gamma p \mapsto K \Theta$

(a)

(b)

Other resonance: $\Delta(\mathrm{no}), \mathrm{N}_{10}(\mathrm{no})$, others...

Lagrangian

$\mathrm{SU}(3)$ Lagrangian for $\overline{10}-8-8 \quad \mathcal{L}=-i g \bar{T}^{j k k} \gamma_{5} P_{m}^{j} B_{n}^{k} \varepsilon^{l m n}+$ h.c. gives

$$
\begin{aligned}
& \mathcal{L}_{K N \Theta}=-i g_{K N \Theta}\left(\bar{\Theta} \gamma_{5} K^{+} n-\bar{\Theta} \gamma_{5} K^{0} p\right)+\text { h.c. } \\
& \mathcal{L}_{K^{*} N \Theta}=-g_{K^{*} N \Theta}\left(\bar{\Theta} \gamma_{\mu} K^{*+\mu} n-\bar{\Theta} \gamma_{\mu} K^{* 0 \mu} p\right)+\text { h.c. }+ \text { (tensor coup.) }
\end{aligned}
$$

Other Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\gamma K K}, \mathcal{L}_{\gamma N N}, \mathcal{L}_{\kappa^{*} K \gamma}, \quad \mathcal{L}_{\gamma \Theta \Theta}=-e \bar{\Theta}\left(A_{\mu} \gamma^{\mu}-\frac{\kappa_{\Theta}}{2 M_{\Theta}} \sigma_{\mu \nu} \partial^{\nu} A^{\mu}\right) \Theta, \\
& \mathcal{L}_{\pi N N}=\frac{g_{\pi N N}}{2 M_{N}} \bar{N} \gamma^{\mu} \gamma_{5} \partial_{\mu} \pi N, \\
& \mathcal{L}_{K^{*} K \pi}=-i g_{K^{*} K \pi}\left(\bar{K} \partial^{\mu} \pi K_{\mu}^{*}-\partial^{\mu} \bar{K} \pi K_{\mu}^{*}\right)+\text { h.c. }
\end{aligned}
$$

Coupling constants

Coupling constants
$g_{K N \Theta}$: can be determined from $\Gamma(\Theta)$ expt. upper bound: 9-25 MeV

$$
\Gamma(\Theta)=\frac{g_{K N \Theta}^{2} p_{K}}{2 \pi M_{\Theta}}\left(E_{N}-M_{N}\right)
$$

chiral soliton model: 5-15 MeV (Polyakov +, Diakonov +)
KN scattering analyses: a few (~ 5) MeV or even less (Nussinov, Arndt +, ...)
we do not try to fix this coupling and set $g_{K N \Theta}=1(\Gamma(\Theta) \sim 1 \mathrm{MeV})$
leaving its determination to near future expt.
$g_{K^{*} N_{\Theta}}$: unknown and cannot be inferred from $\Gamma(\Theta)$
some estimate based on several assumptions (not suppressed)
we give the results by varying $g_{K^{*} N} \delta g_{K N \Theta}$
κ_{Θ} : anomalous magnetic moment of the Θ
depends on the model for the pentaquark structure -0.9~+0.3 (?)
we take $\kappa_{\Theta}=0$ (the results are not so much dependent on κ_{Θ} in the above range)
Form factors
$F\left(r, M_{\mathrm{ex}}\right)=\frac{\Lambda^{4}}{\Lambda^{4}+\left(r-M_{\mathrm{ex}}^{2}\right)^{2}}$
$\Lambda=1.8 \mathrm{GeV}$ from kaon photonproduction
1.2 GeV from $\pi \mathrm{N}$ scattering
(Janssen et al., Giessen group)

$\gamma \mathrm{N} \mapsto \mathrm{K} \Theta$ (results)

Total cross sections

$$
\gamma \mathrm{n} \rightarrow \mathrm{~K}^{-} \Theta^{+} \quad \gamma \mathrm{p} \rightarrow \overline{\mathrm{~K}}^{0} \Theta^{+}
$$

$$
\begin{array}{ll}
& g_{K^{*} N \Theta}=0 \\
& g_{K^{*} \Theta} g_{K N \Theta}=0.7 \\
\ldots \ldots-\cdots & g_{K^{*} N \Theta} / g_{K N \Theta}=-0.7
\end{array}
$$

$\gamma \mathrm{N} \mapsto \mathrm{K}^{*} \Theta$

Dotted: $g_{K^{*} N \Theta}=0$, Solid: $g_{K^{*} N \Theta} / g_{K N \Theta}=0.7$, Dashed: $g_{K^{*}{ }^{*} \Theta} / g_{K N \Theta}=-0.7$

$\mathrm{KN} \mapsto \pi \Theta$

Isospin relation

$$
\mathcal{M}_{K^{+} p}=-\mathcal{M}_{K^{0}{ }_{n}}=-\sqrt{2} \mathcal{M}_{K^{0} p}=-\sqrt{2} \mathcal{M}_{K^{\dagger}{ }_{n}}
$$

(b)

(c)

I=1 Θ (yes)
$\mathrm{I}=2 \Theta(\mathrm{no})$

$\mathrm{K}^{+} \mathrm{p} \mapsto \pi^{+} \Theta^{+}$

red: $g_{K^{*} N \Theta}=0$
black: $g_{K^{*} N \Theta} d g_{K N \Theta}=0.7$ blue: $g_{K^{*} N} \Theta g_{K N \Theta}=-0.7$

$\mathrm{NN} \mapsto \Lambda \Theta, \Sigma \Theta$

Isospin relation for $N N \mapsto \Sigma \Theta$

$$
\mathcal{M}_{p p}=-\mathcal{M}_{n n}=-\sqrt{2} \mathcal{M}_{n p}
$$

SU(3) symmetry for KNY couplings

$$
g_{K N \Lambda} / \sqrt{4 \pi} \sim-3.7, \quad g_{K N \Sigma} / \sqrt{4 \pi} \sim 1.0
$$

Nijmegen potential (1999) for $K^{*} N Y$ couplings

$n p \mapsto \Lambda^{0} \Theta^{+}, \Sigma^{0} \Theta^{+}$

Summary

- Exploratory study on $\Theta^{+}(1540)$ production in $\gamma \mathrm{N}, \mathrm{KN}(\pi \mathrm{N})$, and NN reactions
- N^{*} contribution? Spin asymmetries?
- Other reactions with other final states? Liu \& Ko, PRC68, nucl-th/0309023,0310087
- Other Θ particles? Quantum numbers?

Total and diff. cross sections at $E_{\gamma}=2.5 \mathrm{GeV}$ for odd-parity $\Theta^{+}(1540)$

red: $g_{K^{*}{ }^{*} \Theta}=0$
black: $g_{K^{*} N \Theta} g_{K N \Theta}=0.7$

