Searching for "Other" 5-quark States in Present and Future Experiments

Summary of Focus Group Discussion

Experiments: Reinhard Schumacher Theory Aspects: Carl Carlson

## Experiments

- Experiments at COSY/Juelich
- Measurements at STAR/RHIC/BNL
- Cascades ( $\Xi^{--}_{5}$ ) at CLAS/JLab
- Sigmas ( $\Sigma_5$ ) at CLAS/JLab
- Other narrow baryons HallA/JLab
- Discussion Summary





**Detectors** at COSY:

- Internal:
- External:
- ANKE
- BIG KARL
- COSY-11 TOF
- NO electromagnetic calorimeter ("photon blind")
  - $\rightarrow$  only charged particles

NO dedicated experiment yet !

 $\rightarrow$  use existing data









#### **Experimental result:**

- Invariant mass distribution of (p K<sup>0</sup>) for events within [K<sup>0</sup>, Σ<sup>+</sup>] range:
  - covers proper inv. mass range
  - No signal; too much background !





 $pp \rightarrow \pi^+ \theta^+ \Lambda \rightarrow \pi^+ [p \ K^0][p \ \pi^-]$ 



→ 4-charged-particle events: a) Is there a <u>second</u> proton ?  $p p \rightarrow p_1 p_2 \pi^+ \pi^- X$ <u>2c:</u>  $M_{inv}(\pi^+\pi^-) = K^0$  & X =  $\pi$ &  $M_{inv}(p_1 \pi) = \Sigma^+$  $M_{inv}(p_1 \pi^-) = \Lambda \quad \& \quad X = \mathbf{K}^0$ 2f:  $\rightarrow$  M<sub>inv</sub>(p  $\pi^-$ ) vs. MM (pp  $\pi^+\pi^-$ ) Candidate events in [K<sup>0</sup>,  $\Lambda$ ]







Hans Ströher









## Pentaquark Search at $\sqrt{s_{NN}}$ =200 GeV with STAR at RHIC

- •Introduction to STAR
- •Techniques and Analysis
- •Simulation Studies
- •Conclusions and Future Plans

#### Sevil Salur Yale University STAR Collaboration



#### Available Data





|       | # of Events | dNch/dη |
|-------|-------------|---------|
| p+p   | 8 Million   | 3       |
| d+Au  | 14 Million  | 15      |
| Au+Au | 1.5 Million | 800     |



#### What pentaquarks are we looking for?

| $\Theta^+ \rightarrow n + K^+$                     | No  | No id for n                                   |
|----------------------------------------------------|-----|-----------------------------------------------|
| $\Theta^+ \rightarrow p + K^0$                     | Yes |                                               |
| Ξ <sup></sup> →Ξ <sup>-</sup> +π <sup>-</sup>      | Yes |                                               |
| $\Xi^{} \rightarrow \Sigma^{-} + K^{-}$            | No  | No id for $\Sigma \rightarrow n + \pi^-$      |
| $\Xi^+ \rightarrow \Xi^0 + \pi +$                  | No  | No id for $\Xi^0 \rightarrow \Lambda + \pi^0$ |
| $\Xi^+ \rightarrow \Sigma^+ + K^0$                 | No  | No id for $\Sigma^+ \rightarrow p + \pi^0$    |
| Θ <sup>+++</sup> →p+π <sup>+</sup> +π <sup>+</sup> | Yes |                                               |
| <b>Θ</b> -→n+π-                                    | No  | No id for n or $\pi^0$                        |
| Θ <sup>0</sup> →p+K <sup>-</sup>                   | Yes |                                               |
| N₅ <b>→</b> Λ+K                                    | Yes |                                               |
| $\Sigma_5 \rightarrow \Lambda + \pi$               | Yes |                                               |
| $\Sigma_5 \rightarrow p + K^0$                     | Yes |                                               |

Good oportunity to observe anti pentaquarks ( $p/p \sim 0.7$  at RHIC) First we need to identify the decay daughters K<sup>0</sup>,  $\Xi$ ,  $\Lambda$ ,  $\pi$  and p.







Efficiency X Acceptance  $\sim 3\%$ . This factor depends highly on cuts applied. Investigating!



Feasibility Studies with current Au+Au data

From AuAu to pp we have a slightly smaller efficiency with a much higher background!

~0.5-1.5  $\Theta$  per event for AuAu

- 0.5-1.5 X 1.5 Million  $\rightarrow$  0.8-2.3 Million
- Efficiency  $3\% \rightarrow 25-70 \text{ K}$
- Branching Ratio 50%  $\rightarrow$  10-35 K

Background pairs per event in the mass range of  $\Theta$  is 2.

• 2 X 1.5 Million  $\rightarrow$  3 Million Significance  $\sigma = \text{Signal}/\sqrt{2 \text{ X Background+Signal}}$ 

$$\sigma \rightarrow 4-14$$

But bin by bin fluctuations ...

We might be losing some of it via re-scattering of daughters.

## And the STAR result is....

- Not officially released
- Ask the authors for a peek at preliminary data
- They see NO  $\Theta(1540)$  peaks in pp pd or Au Au
- Their present statistics are too poor to conclude much

### Searching for Cascade Pentaquarks with CLAS

John W. Price University of California, Los Angeles

Pentaquark 2003 Workshop



Detect everything but the  $\Xi_{z}$ ; infer by m<sub>x</sub>

| $K^-p \rightarrow K^+\pi^-\Xi^+$                 | (p <sub>K</sub> > 2.7 GeV / <i>c</i> ) |
|--------------------------------------------------|----------------------------------------|
| $K^-n \rightarrow K^+ \Xi^{}$                    | (p <sub>K</sub> > 2.3 GeV/ <i>c</i> )  |
| $\gamma p \rightarrow K^+ K^+ \pi^- \pi^- \Xi^+$ | $(E_{\gamma} > 4.7  \text{GeV})$       |
| $\gamma p \rightarrow K^+ K^0 \pi^- \Xi^+$       | $(E_{\gamma} > 4.3  GeV)$              |
| $\gamma n \to K^+ K^+ \Xi^{}$                    | $(E_{\gamma} > 3.9  \text{GeV})$       |

Good  $\pi/K$  separation needed



# **CLAS search for** $\Xi_{5}$

Look at  $m_{\chi}$  of K <sup>+</sup>K <sup>+</sup> $\pi^{+}$  system

 $m_{\chi}$ (max) ~ 2.3 GeV

No statement about  $\Xi_{z}$ 

from *g6b* (except that we need more energy)

Would be easier on the neutron (higher mass sensitivity)



## g6c Results – Final state cuts

g6c has large bkgd

- Suppress by requring proton in final state
- Every PDG  $\Xi$  state matches an enhancement
- Persistent structure at 1770 and 1860 MeV E nough energy for strong statement on  $\Xi_5$ w/small background



### **Short- and Long-Term Plans**

Short term issue: does the  $\Xi^{--}(1862)$  exist?

- New data are needed ASAP to answer
- CLAS Proposals under consideration
- Long-term issues: too many to list

What are the properties of the  $\Xi_{\varsigma}$ ?

What are the properties of the pentaquarks in general? A re there excited  $\Xi_{s}$ ?

New CLAS proposal for a large data set

Discussion session after workshop on Saturday



- Are they 'narrow'?
- Have they been hunted?
- CLAS g1c data set at 3.1 GeV may be a good place to look.

*q* ≯ q , <del>q</del> The Anti-decuplet in the Chiral Soliton Model D. Diakonov, V. Petrov, hep-ph/0310212 uudds (revised version) Can mix with  $\Theta^{+}(1539)$ octet baryons How 'narrow' are they? N(1650-90) Σ(1760-1810) Ξ(1862) uussd ddssu

## Other baryon states

Xiaodong Jiang, Rutgers

- Hall A search for narrow baryons between the nucleon and the πN threshold
- p(e,e'p<sup>+</sup>)X<sup>0</sup>
- Upper limit published; previous sightings not confirmed
- Science Lesson: If multiple experiments don't see a state, then the state is not real.

## Discussion Summary

- Exotics searches will have biggest impact
- 27-plet exotics exist: look for them
  - But they may not be narrow...
- Try nuclear targets in photoproduction?
  - Neutrino data suggest production ~ A