Pentaquarks and Radial Excitations

H. Weigel

Pentaquark 2003 Workshop

Jefferson Lab

Nov. $6^{th} - 8^{th}$, 2003

Refs.: HW, Int. J. Mod. Phys. **A11** (1996) 2419, HW, Eur. Phys. J **A2** (1998) 391, J. Schechter, HW, Phys. Lett. **B261** (1991) 235

Introduction & Motivation

- ★ General interest in non-three quark baryons
- $\star \Theta^+ \ (Y=2, I=0) \ \text{natural (lightest)} \ \text{candidate} \ (Z^+)$
- $\star \Xi_{3/2}^+$ (Y=-1,I=3/2) next to lightest non–three quark candidate
- * role of such excitations can be studied in chiral soliton models (Skyrme model and its extensions)
- * members of higher dimension SU(3) representation (10)
- ★ higher dimension SU(3) representation play important role for flavor symmetry breaking
- ★ relation to other established baryon excitations that can be constructed from three quarks
- * exotic states as test of a model

Soliton Model & Quantization

★ general structure of the model

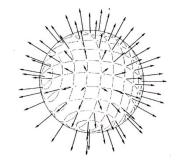
$$\mathcal{L} = \mathcal{L}_{\mathrm{S}}(U^{\dagger}\partial_{\mu}U) + \mathcal{L}_{\mathrm{SB}}(U)$$
 $U \in SU(3)$

- $\star \mathcal{L}_{S}$ flavor symmetric
- $\star \mathcal{L}_{SB}$ parameterizes flavor symmetry breaking:

$$m_{\pi} = 138 \text{MeV}$$
 $m_{\text{K}} = 496 \text{MeV}$
 $f_{\pi} = 93 \text{MeV}$ $f_{\text{K}} = 114 \text{MeV}$

★ Baryon number one sector → hedgehog soliton:

$$U_H(\vec{x}) = \exp(i\hat{r} \cdot \vec{\tau} F(r))$$



Chiral field

★ ridig rotator quantization of rotational "zero modes":

$$U(\vec{x},t) = A(t) U_{\rm H}(\vec{x}) A^{\dagger}(t), \qquad A \in SU(3)$$
(in iso-subspace)

★ Lagrangian function for collective coordinates

$$L = \int d^3r \mathcal{L} = L(A, \Omega_a), \qquad \Omega_a = -i \operatorname{tr} \left(\lambda_a A^{\dagger}(t) \frac{A(t)}{dt} \right)$$
angular velocities

* Hamiltonian for collective coordinates

$$H = -L - \sum_{a=1}^{8} \Omega_a R_a$$
, $R_a = -\frac{\partial L}{\partial \Omega_a} \leftarrow SU(3)$ generators

$$H = E_{cl} + \left(\frac{1}{2\alpha^{2}} - \frac{1}{2\beta^{2}}\right) \vec{J}^{2} + \frac{1}{2\beta^{2}} C_{2} [SU(3)]$$

$$-\frac{3}{8\beta^{2}} + \frac{\gamma}{2} [1 - D_{88}(A)]$$

$$\uparrow$$

$$D_{ab} = \frac{1}{2} \text{tr} \left(\lambda_{a} A \lambda_{b} A^{\dagger}\right) \qquad \sum_{a=1}^{8} R_{a} R_{a}$$

* Casimir operator:
$$C_2|8\rangle = 3|8\rangle$$
, $C_2|10\rangle = 6|10\rangle$,...

- $-E_{\rm cl}, \alpha^2, \beta^2, \gamma$ are functionals of the soliton, *i.e.* numbers
- $-\gamma \propto f_K^2 m_K^2 f_\pi^2 m_\pi^2, \dots$ measures explicit sym. breaking
- \star no other symmetry breaking terms unless model is extended (e.g. vector mesons, chiral quarks)
- $\star \gamma$ dominant symmetry breaker in such extensions

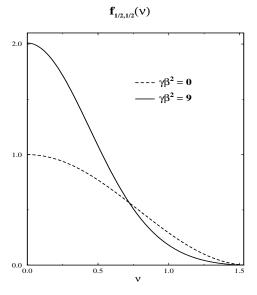
* "Euler angles" and exact diagonalization (Yabu & Ando '88):

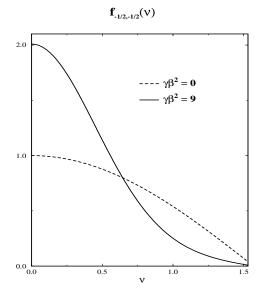
strangeness changing angle

$$\Psi(A) = \sum_{M_L, M_R} D_{I_3, M_L}^{I*}(\alpha, \beta, \gamma) f_{M_L, M_R}(\nu) D_{M_R, -J_3}^{J*}(\alpha', \beta', \gamma') e^{i\rho}$$

$$H\Psi = E\Psi \longrightarrow \text{diff. eqn. for } f_{M_L, M_R}(\nu)$$

nucleon:





 f^2 : probability for rotations into strangeness direction

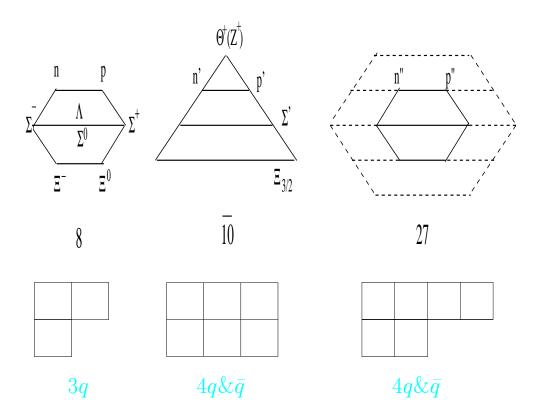
$$\star \gamma \beta^2$$
: - effective symmetry breaking: (explicit) \times (intertia parameter).

– pattern of mass differences $\omega^2 = \frac{3}{2} \gamma \beta^2$:

- non-linear effects are important

★ perturbation expansion: (Park, Schechter, HW, '89)

$$|N\rangle = |N, 8\rangle + 0.0745\gamma\beta^2 |N, 10\rangle + 0.0490\gamma\beta^2 |N, 27\rangle + \dots$$



- ★ flavor symmetry breaking unavoidably includes pentaquark baryons
- ★ rigid rotator approach has pentaquark pieces in octet:

$$\frac{\langle N, 8 | A_3^{(s)} | N, 8 \rangle}{\langle N, 8 | A_3^{(3)} | N, 8 \rangle} = 0.23$$
 $\sim g_A$

non-vanishing strange quark polarization as indication for $q\bar{q}$ pairs.

★ detour: slow rotator approach

(B Schwesinger & HW, Nucl. Phys. **A540** (92) 461)

- coupling of symmetry breaking to soliton profile
- slow collective rotation \Longrightarrow chiral angle reacts on symmetry breaking forces: $F = F(r, \nu)$

$$-F(r,0) \sim \exp(-m_{\pi}r)$$
as $r \to \infty$

$$F(r,\frac{\pi}{2}) \sim \exp(-m_{K}r)$$

$$- H = E_{\rm cl}(\nu) + \frac{3}{4}\gamma(\nu)\sin^2\nu + \frac{1}{2\alpha^2(\nu)}\vec{J}^2 + \dots$$

- exact diagonalization via DEQs for $f_{M_L,M_R}(\nu)$
- proper description of U-spin violation in magnetic moments, e.g. $\mu_p > \mu_{\Sigma^+}$
- reasonable results for g_A/g_V of hyperon β –decay
- * important interplay between flavor symmetry breaking and baryon size

Radial excitations: breathing modes

★ some rough estimates

$$-M_{|N,\bar{10}\rangle} - M_{|N,8\rangle} = \frac{3}{2\beta^2} \approx 400 \text{MeV Roper } N(1440)?$$

$$-M_{|\Delta,27\rangle} \approx 1.75 \text{GeV expt.: P33}(1600) \text{ or P33}(1920)$$
?

- significant mixing between radial excitations and states in higher dimensional SU(3) representations
- no simple $\hbar\omega$ excitations
- * alternative technique to incorporate symmetry breaking effects on soliton profile: collective coordinate $\xi(t)$ for soliton extension

$$U(ec x\,,t)\,=\,A(t)\,U_{
m H}(m{\xi}(t)ec x)\,A^\dagger(t)$$

 \star quantize both A(t) and $\xi(t)$

momentum conjugate to
$$\xi$$

$$H = \frac{1}{2m(\xi)} p_{\xi}^{2} + V(\xi)$$

$$+ \left(\frac{1}{2\alpha^{2}(\xi)} - \frac{1}{2\beta^{2}(\xi)}\right) \vec{J}^{2} + \frac{1}{2\beta^{2}(\xi)} C_{2} [SU(3)]$$

$$+ \frac{1}{2} \text{tr} \left(\lambda_{a} A \lambda_{b} A^{\dagger}\right) s(\xi)$$
symmetry breaking term

- ★ two step-diagonalization of H
 - 1) construct basis states:

$$H_{\text{sym}}|\mu, n_{\mu}\rangle = \epsilon_{\mu, n_{\mu}}|\mu, n_{\mu}\rangle \qquad (i.e. \ s(\xi) \equiv 0)$$

 μ : SU(3) representation

 n_{μ} : breathing excitation in SU(3) representation μ

differential equation in ξ yields $f_{\mu,n_{\mu}}(\xi)$

2) diagonalize matrix $\langle \nu, n_{\nu} | H | \mu, n_{\mu} \rangle$

$$\longrightarrow \epsilon_{B,m}$$
 (spectrum)

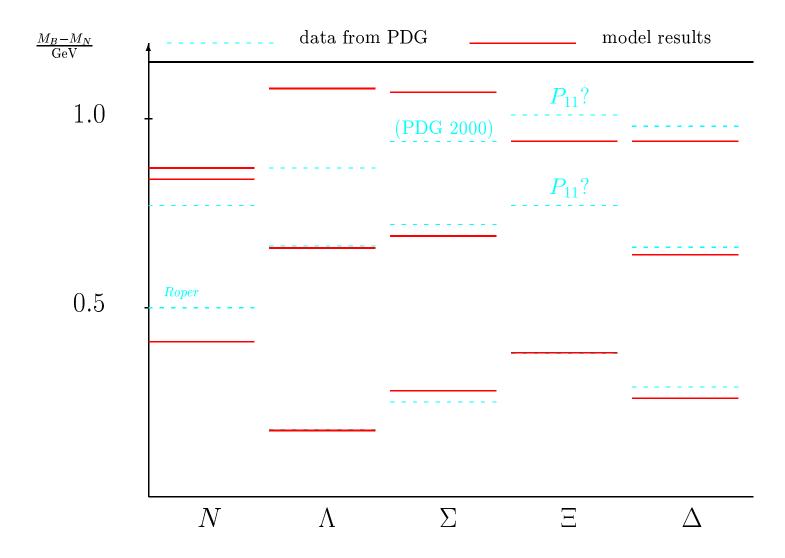
$$\longrightarrow$$
 $|B;m\rangle = \sum_{\mu,n_{\mu}} C_{\mu,n_{\mu}}^{(B,m)} |B;\mu,n_{\mu}\rangle$

m: mth excitation with quantum numbers of baryon B

e.g. Nucleon
$$\sim |N;1\rangle$$
 Roper $\sim |N;2\rangle$

 $C_{\mu,n_{\mu}}^{(B,m)}$: answer to the mixing problem

Computed Spectrum



- ★ low-lying states agree well
- \star first radial excitation somewhat too low
- \star second radial excitation somewhat too high
- * model does not predict any additional states in three quark channels
- * missing states in Λ , Σ channels may be $\hbar\omega$ excitations

★ more detailed numbers for mass differences

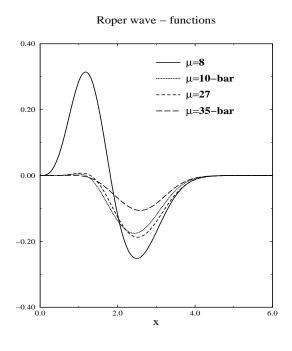
(e: Skyrme parameter)

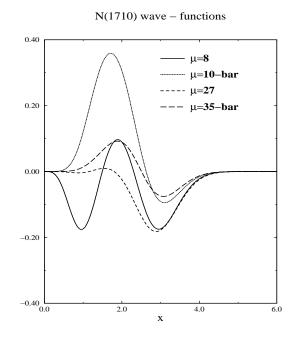
В	m = 0			m=1			m=2		
	e = 5.0	e = 5.5	expt.	e = 5.0	e = 5.5	expt.	e = 5.0	e = 5.5	expt.
N		Input		413	445	501	836	869	771
Λ	175	173	177	657	688	661	1081	1129	871
\sum	284	284	254	694	722	721	1068	1096	838
[1]	382	380	379	941	971	?	1515	1324	?
Δ	258	276	293	640	680	661	974	1010	981
\sum^*	445	460	446	841	878	901	1112	1148	1141
Ξ^*	604	617	591	1036	1068	?	1232	1269	?
Ω	730	745	733	1343	1386	?	1663	1719	?

agreement on the 10% level

* wave-functions

- low-lying states are dominantly octet





Static Baryon Properties

★ magnetic moments

	this	model	expt.		
Baryon	μ_B	μ_B/μ_p	μ_B	μ_B/μ_p	
$\overline{}$	2.21	1.00	2.79	1.00	
n	-1.84	-0.83	-1.91	-0.68	
Λ	-0.52	-0.24	-0.61	-0.22	
Σ^+	1.82	0.82	2.42	0.87	
Σ^0	0.44	0.20			
Σ^-	-0.94	-0.43	-1.16	-0.42	
Ξ_0	-1.06	-0.48	-1.25	-0.45	
Ξ^-	-0.41	-0.19	-0.69	-0.25	
$\Sigma^0 \to \Lambda$	-1.37	-0.62	-1.61	-0.58	

- agreement on 20% level (typical for soliton models)
- correct deviation from U-spin symmetry (generalization of rigid rotator)

★ hyperon decays

		this me	odel	emp.	SU(3)
decay	$g_{ m V}$	$g_{ m A}$	$(g_{ m V}/g_{ m A})_{ m N}$	$g_{ m V}/g_{ m A}$	$(g_{ m V}/g_{ m A})_{ m N}$
$\Lambda \to p$	1.215	0.615	0.797	0.79 ± 0.03	0.72
$\Sigma - \to n$	1.091	0.272	0.393	0.36 ± 0.05	0.36
$\Xi - \to \Lambda$	1.246	0.169	0.213	0.25 ± 0.05	0.18
$\Xi - \to \Sigma^0$	0.690	0.610	1.392	1.29 ± 0.16	1.26

- reasonable agreement with data
- minor effects of flavor symmetry breaking (similar to rigid rotator)

Model predictions for exotic states

```
\star \Theta^{+}(Z^{+}) : 1.57 \dots 1.59 \text{GeV} \ (e = 5.0 \dots 5.5) \ \text{(top of } \bar{10})
  earlier results: M(\Theta^+) - M(N) \approx 600 \text{MeV}
  Biedenharn, Chemtob, Prasałowicz, Walliser, Diakonov et. al., ...
  recent expts.: M(\Theta^+) = (1540 \pm 10) \text{MeV}
  Nakano et. al., DIANA, CLAS, SAPHIR, Asratyan et. al.
\star \Xi_{3/2} : 1.89 \dots 1.91 \text{GeV} \ (e = 5.0 \dots 5.5) (bottom of \bar{10})
  other pred.: M(\Xi_{3/2}) \approx 1.78 \text{GeV} (Walliser & Kopeliovich)
                    M(\Xi_{3/2}) \approx 2.07 \text{GeV} (Diakonov et. al.)
  recent expt.: (1.862 \pm 0.002)GeV (NA49 @ CERN)
* radial excitations: \Theta^+: 2.02...2.07GeV (e = 5.0...5.5)
                             \Xi_{3/2}: 2.29...2.33GeV (e = 5.0...5.5)
```

 \star estimate of widths $(\Theta^+ \longrightarrow nK^+)$

- P-wave decay: $\Gamma \propto |\vec{p}_M|^3$ (indicates experimentally observed narrowness)
- open problem beyond that (in soliton models)

interaction Lagrangian must be linear in meson field

however: $\frac{\partial \mathcal{L}}{\partial U}\Big|_{Sol} = 0$ by definition of soliton

- this model:

PCAC, GT & plane wave appr.: $\Gamma \approx 80 \text{MeV}$

PCAC, GT & distorted wave appr.: $\Gamma = \mathcal{O}(m_{\pi}^2/f_{\pi})$

N. B.: complete treatment of PCAC requires induced kaon fields:

$$K \sim W(r) \begin{pmatrix} \Omega_4 - i\Omega_5 \\ \Omega_6 - i\Omega_7 \end{pmatrix}$$

Summary

- ★ description of pentaquark states requires understanding of mixing between radially excited baryons and states in higher dimensional SU(3) representations
- * suggested approach: breathing mode quantization in SU(3) chiral soliton model
 - allows for exact diagonalization of Hamiltonian with flavor symmetry breaking
 - accounts for observed U-spin violation in baryon magnetic moments
 - agrees with SU(3) description of semi-leptonic hyperon decays
 - radially excited baryons and states in higher dimensional SU(3) representations mix via flavor symmetry breaking
- * model reproduces essential characteristics of spectra in P-wave channels of 3q baryons.
- \star no need to call for new states in 3q channels
- ★ good agreement with observed masses for Θ^+ and $\Xi_{3/2}$ pentaquarks
- ★ fully dynamical calculation of width is still missing