Penta-Quark Workshop November 6-8, 2003

The possibilities of the High Resolution studies of the Θ family in Hall A

Bogdan Wojtsekhowski, JLab

Are two corners found ?

FIG. 3: (Color online) (a) The sum of the $\Xi^-\pi^-$, $\Xi^-\pi^+$, $\overline{\Xi}^+\pi^-$ and $\overline{\Xi}^+\pi^+$ invariant mass spectra. The shaded histogram shows the normalised mixed-event background. (b) Background subtracted spectrum with the Gaussian fit to the peak.

The questions are

- What is the mass of the resonance ?
- What is the width of the resonance ?
- What is the isospin? Where is the Θ^{++} ?
- What is parity of Θ^+ and what can reveal it?
- What is a cross section in process $\gamma n \rightarrow \Theta^+$?
- How to get best E/B event sample for study of the spin, the form factor, the production mechanism.
- Where are the decuplet partners?
- How large it is ? What is the formfactor ?
- Is any linear photon polarization effect ?

The mass and width of the Θ^+

	mass, MeV	width, MeV
DPP prediction	1530	< 15
SPring-8	1540 ± 10	< 25
DIANA	1539 ± 2	< 9
CLAS, γ n	1542 ± 5	< 21
$CLAS,\gammap$	1540 ± 10	< 32
ELSA	$1540 \pm 4 \pm 2$	< 25
ITEP ν	1533 ± 5	< 20
USC /hep-ph/0307357	at 1543	< 6
GWU/nucl-th/0308012	at $1520 - 1560$	up to 0.1
GWU/nucl-th/0308012	at $1540 - 1550$	up to ~ 1
Juelich/hep-ph/0309243	at 1540	< 5

The reactions of interest in Hall A

- $D(e, K^-\Theta^+)e'p \quad \Theta^+ \to K^+n$
- $D(e, e'K^-p_{soft})\Theta^+$.
- ${}^{3}\vec{He}(e,K^{-}\Theta^{+})e'pp \quad \Theta^{+} \to K^{+}n$
- $H(e, e'K^+)\Sigma^o$.
- $D(e, e'K^+p_{soft})\Sigma^-$.
- $D(e, K^+\Sigma^-)e'p \quad \Sigma^- \to K^-n.$
- $H(e, K^-\Theta^{++})e' \quad \Theta^{++} \to K^+p$
- $H(e, e'K^{-})\Theta^{++}$.
- $H(e, e'K^-\pi^+)\Theta^+$.

The detectors in Hall A

- High Resolution Spectrometers, σ_p/p = 1.5 · 10⁻⁴, σ_θ ~ 2 mr, momentum bite Δp/p ~ 0.09, Ω = 6 msr, θ^{cent}_{min} = 6°, Δθ_{in plane} = 2.8°.
 PID package consists of Gas Cherenkov, Lead Glass Shower, Aerogel Cherenkov counters, RICH-freon, ToF resolution of 0.15 ns, path from the target of 25 m.
- BigBite Spectrometer, σ_p/p = 0.01 * p GeV, Δp/p ~ 80%, σ_θ ~ 3 mr, Ω ~ 80 msr (for θ > 45°), path from the target of 4 m, 40 cm long target.
- Large Neutron Detector, 180 veto counters, 230 neutron bars, surface area of 1.6x5 m², an efficiency of 30%, ToF resolution of 0.30 ns, position resolution of 5 cm.
- Big Calorimeter (with Hall C), 1700 lead glass counters, surface area of 1.3 x 2.1 m², resolution of 5% at 1 GeV, position resolution of 0.5 cm.

H(e,e'K+)X spectra from HRS in Hall A

:1/06/19 13.10

Optics calibration with septum+HRS

The scheme of BigBite

The scheme of Neutron arm

A resonance can be found in

- Phase Shift Analysis of the scattering data require fine energy scan, angular coverage.
- Missing mass spectrum require a good tag of the reaction.
- Invariant mass spectrum require a multi particle detector.

Considerations for the missing mass approach

- High resolution, high momentum, small angle spectrometer for the forward $K^{-(+)}$.
- High resolution, small scattering angle spectrometer for the scattered electron.
- Large acceptance, low momentum detector for the spectator proton.
- Cold gas target D₂ (H₂), 40 cm long, minimum wall thickness.

Considerations for the invariant mass approach

- High resolution, high momentum, small angle spectrometer for the forward $K^{-(+)}$.
- Large acceptance, short path, out-off-plane spectrometer for the kaon.
- Large acceptance, out-off plane detector for the neutron(proton).
- Cold gas target D₂ (H₂), 40 cm long.

An effective "tag" particle

reaction like $\gamma + n \rightarrow K^- + \Theta^+$ an invariant $\Delta t = t_{min} - 2E_{\gamma}^{cm}E_K^{cm}(1 - \cos\theta_K^{cm})$ for typical conditions the value of $\,2\,E_{\gamma}^{cm}E_K^{cm}\sim 4\,\,{\rm GeV^2}$ the cross section $d\sigma/dt \sim exp(B\Delta t)$, assuming the value of $B = 3 \text{ GeV}^{-2}$ have $d\sigma/dt \sim exp(-12 \cdot (1 - \cos\theta_{\kappa}^{cm}))$ Probability of K^- detection: cross section $\int^{HRS} \sigma_{\gamma,K^-}^{\Theta^+} d\Omega_{K^-} = 0.034 \cdot \sigma_{t;\gamma}^{\Theta^+}$ $1 - \cos \theta$ $\int^{HRS} \sigma_{\gamma^*,K^-}^{\Theta^+} d\Omega_{K^-} = 0.050 \cdot \sigma_{t:\gamma^*}^{\Theta^+}$ $^{-1}$ $\cos(\Theta^m)$ $\mathcal{L}_{\gamma n(eutron)} = \frac{N}{A} \cdot 0.015 \cdot \frac{\Delta E_{\gamma}}{E_{\gamma}} \cdot \mathcal{L}_{eN(ucleon)} \sim 3 \cdot 10^{-4} \cdot \mathcal{L}_{eN} = 3 \cdot 10^{34}$ $\nu_{\gamma,K^-nK^+}^{\Theta^+} = \mathcal{L}_{\gamma n} \cdot \sigma_{\gamma n}^{\Theta^+} \cdot f_{\gamma,K^-}^{HRS} \cdot f_{nK^+} \cdot f_{K^-}^{decay} \cdot \eta_n \cdot f_{K^+}^{decay}$ $\mathcal{L}_{\gamma^* n} = \frac{N}{A} \cdot 1 \cdot 10^{-5} \cdot \mathcal{L}_{eN(ucleon)} = 5 \cdot 10^{32} \text{ Hz/cm}^2$ $\nu_{\gamma^*,K^-}^{\Theta^+} = \mathcal{L}_{\gamma^*n} \cdot \sigma_{\gamma^*n}^{\Theta^+} \cdot f_{\gamma^*,K^-}^{HRS} \cdot f_{K^-}^{decay} \sim 80k$ events per day

$$u_{\gamma^*,K^-p_{soft}}^{\Theta^+} =
u_{\gamma^*,K^-}^{\Theta^+} \cdot P_{soft} \cdot \frac{\Delta\Omega}{4\pi} \sim 80$$
 per day

from the photo production cross section $\sigma_t \sim 130$ nb of the resonance $\rightarrow 1.5$ nb will be detec at eN luminosity of 1*10³⁸ and 1.3 nb cross section resonance detection rate of 470 per day

the upper limit (3 sigma) after 2 days of running: on the level of 0.07 nb: 0.05% of Θ^+ value for $\Gamma = 20$ MeV on the level of 0.20 nb: 0.15% of Θ^+ value for $\Gamma = 3$ MeV

1.55

missing mass

1.65

1.45

1.5

500

400

600

) 300 momentum [MeV/c]

200

100

0

The first measurement

The second measurement

Summary

- Two schemes for the high resolution study of the Θ⁺ are developed.
- The Hall A basic equipment is a key element in both schemes. The new equipment of approved GEN and ChPT experiments will make the rest.
- The high resolution search of the Σ^{o} and the Θ^{++} was evaluated.

It is a pleasure to thank I. Strakovsky for numerous discussions of the subject and to acknowledge a crucial contribution of V. Nelyubin in MC simulation of the setup.

I'd like to thank G. Cates, K. de Jager and R. Feuerbach for the fruitful and stimulating discussions. I am grateful to L. Cardman for insight on the resonance properties and encouragement of the presented study.