Precision Measurement of Neutron Spin Asymmetry A_1^n at Large x_{Bj}

Xiaochao Zheng
Massachusetts Institute of Technology
June 12, 2003

OUTLINE

- Physics Motivation
 - A long introduction

- Theories - A_1^n at Large x_{Bj}

- The Experiment
 Overview Experimental Setup Polarized 3He Target Data Analysis

- Results and Discussion

- Summary and Outlook
Introduction

The Four Interactions of Our Nature

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Strength</th>
<th>Force Type</th>
<th>Well Understood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational</td>
<td>10^{-38}</td>
<td>General Relativity</td>
<td>Well understood (at large scale)</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>$1/137$</td>
<td>SU(2)×U(1) gauge theory</td>
<td>Well understood</td>
</tr>
<tr>
<td>Weak</td>
<td>10^{-5}</td>
<td>SU(2)×U(1) gauge theory</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>$\lesssim 1$</td>
<td>SU(3), QCD</td>
<td>Not well understood yet</td>
</tr>
</tbody>
</table>

Strong Interaction

- Has its characteristics of
 - asymptotic freedom
 - confinement
- Is mostly non-perturbative – difficult to handle theoretically;
- Where and how can we verify that QCD is the correct theory for strong interaction?
 - Hadron structure as an ideal laboratory to study strong interaction
 - Deep inelastic scattering (DIS) – testing ground of QCD in the perturbative regime.
EXPLORING NUCLEON STRUCTURE USING ELECTROMAGNETIC PROBE

The One-Photon Exchange Approximation

\[k' = (E', k') \quad P' = (E'_t, P') \]

\[q = (\nu, q) \]

\[k = (E, \vec{k}) \quad P = (M, \vec{0}) \]

- The four momentum transfer \(Q^2 \equiv -q^2 \)
- The invariant mass \(W^2 = M^2 + 2M\nu - Q^2 \)
 \[\nu = E - E', \quad y = \nu/E \]

The cross section

\[\frac{d\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\alpha W_1(Q^2, \nu) + \beta W_2(Q^2, \nu) \right] \]

for point like target
RESPONSES OF ELECTRON-NUCLEUS SCATTERING

Cross section

\[W = 2 \text{ GeV} \] (elastic)

\[W = M_T \] (quasi-elastic)

\[W > 2 \text{ GeV} \] (deep inelastic)

\[W = M \]

\[Q^2 (\text{GeV/c})^2 \]
1950’s: Nucleons are not point-like particles, Hofstadter et al.

1968: First DIS data from SLAC, Friedman, Kendall, Taylor et al.
 – Nucleons have hard point-like scattering centers (partons);

1969:
 – Bjorken – scaling behavior:
 In the limit of $Q^2 \rightarrow \infty, \nu \rightarrow \infty$ and Q^2/ν fixed,

 $$MW_1(Q^2, \nu) \rightarrow F_1(x), \quad \nu W_2(Q^2, \nu) \rightarrow F_2(x);$$

 Bjorken limit and scaling variable $x_{Bj} \equiv \frac{Q^2}{2M\nu}$
 – Bloom et al., Breidenbach et al., observed scaling experimentally;
 – Feynman – Quark-Parton model (QPM);
 DIS is the incoherent sum of electron scattering off asymptotically free quarks;
 In the Bjorken Limit, x_{Bj} is the fraction of the nucleon momentum carried by the
 struck quark.

1972-1973: ’t Hooft, Gross and Wilczek and Politzer
 Asymptotic freedom of QCD:
 $$\alpha_s(Q^2) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda^2)}$$
 QCD – possible theory to describe strong interaction

Since then, DIS continue to serve as the major experimental tool to study nucleon
structure and a testing ground for perturbative QCD.
Formalism

\[
\frac{d^2 \sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{MQ^4} \left[2 \sin^2 \frac{\theta}{2} F_1(x, Q^2) + \frac{M^2}{\nu} \cos^2 \frac{\theta}{2} F_2(x, Q^2) \right]
\]

\[
F_1(x, Q^2) = \frac{F_2(x, Q^2)(1 + \gamma^2)}{2x(1 + R(x, Q^2))}
\]

After 35 Years of Study

\[
F_2(x, Q^2)
\]

NMC data

\[
x = 0.0045 (x = 4.8)
x = 0.008 (x = 4.0)
x = 0.0125 (x = 3.2)
x = 0.0175 (x = 2.5)
x = 0.025 (x = 2.0)
x = 0.035 (x = 1.5)
x = 0.05 (x = 1.2)
x = 0.07 (x = 1.0)
\]

\[
x = 0.09 (x = 7.5)
x = 0.11 (x = 5.2)
x = 0.14 (x = 3.7)
x = 0.18 (x = 2.5)
x = 0.225 (x = 1.7)
x = 0.275 (x = 1.2)
x = 0.35 (x = 1.0)
x = 0.50 (x = 1.0)
\]
Scaling Violation in QCD

- Bjorken limit, $Q^2 \to \infty$, one photon exchange

- No Q^2 dependence \to scaling;

- High Q^2, soft gluon emission

 - Q^2 evolution and DGLAP equations;
 - $\log Q^2$ dependence \to mild scaling violation;

- Low Q^2, hard gluon emission

 - Operator Product Expansion and higher twist effects;
 - $\frac{1}{(Q^2)^{t-2}}$ dependence \to strong scaling violation;
STRUCTURE FUNCTIONS IN QPM

Within the Quark-Parton Model,

The Callan-Gross Relation: \(F_2(x) = 2x F_1(x) \)

\[
F_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i(x)]
\]

After 35 years of DIS experiments, the unpolarized structure of the nucleon is reasonably well understood (for moderate \(x \) region).
In 1980's, development of polarized beam and polarized target allow people to study the spin structure of the nucleon through polarized DIS.

- Spin observables provide new testing ground of QCD.
Polarization data has often been the graveyard of fashionable theories. If theorists had their way they might well ban such measurements altogether out of self-protection.

– J.D. Bjorken

- 1988-1989, the Proton “Spin Crisis”
AFTER TWO DECADES

- Current Understanding of the Nucleon Spin –

\[\frac{1}{2} = S_N^z = S_z^q + L_z^q + J_z^q; \]

Quarks contribute \(\sim 30\% \) to the nucleon spin

- “Surprise” instead of “Crisis”

- However, lot of problems remain
 - \(L_z^q \) ? \(J_z^q \) ?
 - Higher twist effect?
 - Deep valence region \((x_{Bj} > 0.4) \) poorly explored.
POLARIZED STRUCTURE FUNCTIONS

- Longitudinally Polarized Target:

\[
\frac{d^2 \sigma_{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma_{\uparrow\downarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{E\nu Q^2} \left[(E + E' \cos \theta) g_1(x, Q^2) - 2xM g_2(x, Q^2)\right]
\]

- Transversely Polarized Target:

\[
\frac{d^2 \sigma_{\uparrow\Rightarrow}}{d\Omega dE'} - \frac{d^2 \sigma_{\uparrow\Leftarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{E\nu Q^2} \sin \theta \left[g_1(x, Q^2) + \frac{2ME}{\nu} g_2(x, Q^2)\right]
\]

INTERPRETATION OF \(g_1 \) IN QPM

\[
g_1(x) = \frac{1}{2} \sum_i e_i^2 \left[q_i^\uparrow(x) - q_i^\downarrow(x)\right] = \frac{1}{2} \sum_i e_i^2 \left[\Delta q_i(x)\right]
\]

\(g_2 \) AND HIGHER TWIST

\[
g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \bar{g}_2(x, Q^2)
\]

\[
g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{g_1(y, Q^2)}{y} dy
\]
VIRTUAL PHOTON ASYMMETRIES

\[A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \]

\[A_1 = \frac{g_1 - \gamma^2 g_2}{F_1} \quad \text{with} \quad \gamma^2 = \frac{Q^2}{\nu^2} = \frac{4M^2 x^2}{Q^2} \]

\[\approx \frac{g_1}{F_1} \quad \text{at large} \ Q^2 \]

\[A_2 = \frac{\sigma_{LT}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\gamma[g_1 + g_2]}{F_1} \]
What Makes the Large x Region Interesting?

- At large x, valence quark dominate;
- Less contribution from $q - \bar{q}$ sea and gluons;
- A relatively clean region to study the nucleon structure.
After 20 years of Polarized DIS study, the large x region stays poorly explored.
EXPERIMENTAL DIFFICULTIES

- High luminosity is required;
 Rate = luminosity \times cross section;
 At large x, σ_{Mott} \downarrow and $q(x)$ \downarrow \Rightarrow small cross section

- No dense free neutron target.
EXPERIMENTAL DIFFICULTIES

- High luminosity is required;
 Rate = luminosity \times cross section;
 At large x, σ_{Mott} \downarrow and $q(x)$ \downarrow \Rightarrow small cross section

 – 1997, JLab CW Polarized e^- Beam

- No dense free neutron target.

 – 1998, Hall A Polarized 3He as an Effective \bar{n} Target
Theoretical Predictions of A_{1}^{n}

MODELS

- SU(6) CQM
- Broken SU(6) CQM – N.Isgur
- pQCD (HHC) – S. J. Brodsky, M. Burkardt, I. Schmidt (BBS) ;
 - E. Leader, A.V.Sidorov, D.B.Stamenov, LSS(BBS) ;
- Chiral Quark-Soliton Model – H. Weigel, L. Gamburg;
- Instanton Model – N.I.Kochelev, $A_{1}^{n} \sim 0$ or $A_{1}^{n} < 0$;
- Local Duality – W. Melnitchouk;

PARTON DISTRIBUTION FUNCTIONS FROM WORLD DATA

- LSS(BBS) – E. Leader, A.V.Sidorov, D.B.Stamenov, with pQCD (HHC) imposed ;
- LSS 2001 – E. Leader, A.V.Sidorov, D.B.Stamenov ;
- Statistical model - C.Bourrely, J. Soffer .
\[|n \uparrow\rangle = \frac{1}{\sqrt{2}} |d \uparrow (ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |d \uparrow (ud)_{S=1}\rangle - \frac{1}{3} |d \downarrow (ud)_{S=1}\rangle - \frac{1}{3} |u \uparrow (dd)_{S=1}\rangle - \frac{\sqrt{2}}{3} |u \downarrow (dd)_{S=1}\rangle \]

\[A_1^n = 0, \quad A_1^p = \frac{5}{9} \]
However, SU(6) symmetry is well known to be broken:

\[\text{In SU(6)} \quad R^{nP} \equiv \frac{F_2^n}{F_2^p} = \frac{2}{3} \]

- Nucleon is made of three valence quarks;

- Hyperfine interaction $\vec{S}_i \cdot \vec{S}_j \delta^{(3)}(r_{ij}) \Rightarrow S = 1$ diquark state suppressed

$$|n \uparrow\rangle \rightarrow |d \uparrow (ud)_{S=0}\rangle \text{ as } x \rightarrow 1;$$

$$A^p_1$$ and $$A^P_1 \rightarrow 1 \text{ as } x \rightarrow 1.$$

- The large x region is where CQM is supposed to work.
Perturbative QCD:

- Hadron helicity conservation (HHC) – based on the assumption that the orbital angular momentum of the quarks is zero
 * At \(x \to 1 \), \(S_Z = 1 \) diquark state suppressed;
 * \(\frac{\Delta u}{u} \to 1 \), \(\frac{\Delta d}{d} \to 1 \) at \(x \to 1 \);
 * \(A_1^n \) and \(A_1^P \) \(\to 1 \) as \(x \to 1 \).

- BBS S. J. Brodsky, M. Burkardt, I. Schmidt, hep-ph/9401328v2
Curves: (1) LSS(BBS); (2) BBS; (3) CQM; (4) LSS 2001 \((g_1^n/F_1^n, Q^2 = 5)\);
(5) E155 experimental fit; (6) Stat Model \((Q^2 = 4)\);
(7) Chiral Soliton \((g_1^n/F_1^n, Q^2 = 0.4)\); (8) Local Duality;
LIST OF COLLABORATORS

J. Gao
California Institute of Technology
K. Aniol, D. Margaziotis
California State University, LA
P. Markowitz
Florida International University
R. Roche
Florida State University
M. Roedelbronn
University of Illinois
F. Cusanno, R. De Leo, F. Garibaldi, S. Frullani, G. Urciuoli
INFN

J.-P. Chen, E. Chudakov, J. Gomez, K. de Jager, R. Michaels, O. Hansen,
J. LeRose, N. Liyanage, B. Reitz, A. Saha, B. Wojtekowskki
Jefferson Lab
K. McCormick
Kent State University
W. Korsch, P. Zolnierzczuk
University of Kentucky
J. Kelly, T. Horn, N. Savvinov
University of Maryland
L. Kaufman, A. Vacheret
University of Massachusetts
W. Bertozzi, Z. Chai, D. Dutta, H. Gao, D. Higinbotham, M. Rvachev, S. Sirca,
H. Xiang, Y. Xiao, F. Xiong, B. Zhang, X. Zheng, L. Zhu
Massachusetts Institute of Technology

J. Calarco
University of New Hampshire
W. Hinton
Old Dominion University
E. Busato, S. Dieterich, R. Gilman, X. Jiang, S. Strauch
Rutgers University
P. Souder
Syracuse University
G. Ron
Tel Aviv

Z.-E. Meziani, S. Choi, K. Slifer, P. Solvignon
Temple University
A. Camsonne, G. Cates, A. Deur, J. Singh
University of Virginia
D. Armstrong, T. Averett, K. Kramer, S. Binet, C. Butuceanu, M. Finn,
B. Moffit, S. Phillips, A. Powell, J. Roche, D. Steiner, V. Sulkostry, X. Zhu
College of William and Mary
Experiment E99-117

Measure A_1^n at

<table>
<thead>
<tr>
<th>x_{Bj}</th>
<th>0.327</th>
<th>0.466</th>
<th>0.601</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^2 , (\text{GeV/c})^2$</td>
<td>2.709</td>
<td>3.516</td>
<td>4.833</td>
</tr>
<tr>
<td>$W^2 , (\text{GeV/c})^2$</td>
<td>6.462</td>
<td>4.908</td>
<td>4.090</td>
</tr>
</tbody>
</table>

Measure electron asymmetries A_\parallel and A_\perp in inclusive $e^- - ^3\text{He}$ DIS

$$A_\parallel \equiv \frac{\sigma_{\downarrow \uparrow} - \sigma_{\uparrow \uparrow}}{\sigma_{\downarrow \uparrow} + \sigma_{\uparrow \uparrow}}$$

$$A_\perp \equiv \frac{\sigma_{\downarrow \Rightarrow} - \sigma_{\uparrow \Rightarrow}}{\sigma_{\downarrow \Rightarrow} + \sigma_{\uparrow \Rightarrow}}$$

$$A_1 = \frac{A_\parallel}{D(1 + \eta \xi)} - \frac{\eta A_\perp}{d(1 + \eta \xi)}$$

Run Successfully from June 1 to July 31, 2001
Experimental Setup

\[^3\text{He}(e^-, e') \]

- \(e^- \): Jefferson Lab (JLab) polarized \(e^- \) beam

 \[5.734 \text{ GeV}, \ P_{\text{beam}} = 80\% \]

- \(^3\text{He} \): Hall A polarized \(^3\text{He} \) target

 \[\sim 14 \text{ atm @ } 50^\circ\text{C}, \ P_{\text{targ}} = 40\% \]

- \(e' \): Two Hall A High Resolution Spectrometers (HRS).
Development of $^3\bar{He}$ Target Technology

<table>
<thead>
<tr>
<th>Lab/Exp</th>
<th>year</th>
<th>beam</th>
<th>$I[\mu A]$</th>
<th>$\rho[\text{cm}^{-2}]$</th>
<th>$\mathcal{L}[\text{s}^{-1}\text{cm}^{-2}]$</th>
<th>P_{targ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT/Bates(I)</td>
<td>90</td>
<td>e^-</td>
<td>6</td>
<td>7.5×10^{20}</td>
<td>2.8×10^{34}</td>
<td>0.19</td>
</tr>
<tr>
<td>MIT/Bates(IIa)</td>
<td>90</td>
<td>e^-</td>
<td>11</td>
<td>1.1×10^{19}</td>
<td>7.6×10^{32}</td>
<td>0.30</td>
</tr>
<tr>
<td>TRIUMF</td>
<td>91</td>
<td>p</td>
<td>3.5×10^{-3}</td>
<td>20×10^{21}</td>
<td>4.4×10^{31}</td>
<td>0.60</td>
</tr>
<tr>
<td>SLAC(E142)</td>
<td>92</td>
<td>e^-</td>
<td>1.5</td>
<td>7×10^{21}</td>
<td>6.6×10^{34}</td>
<td>0.35</td>
</tr>
<tr>
<td>MIT/Bates(IIb)</td>
<td>93</td>
<td>e^-</td>
<td>25</td>
<td>3.3×10^{18}</td>
<td>5.1×10^{32}</td>
<td>0.38</td>
</tr>
<tr>
<td>IUCF</td>
<td>93</td>
<td>p</td>
<td>70</td>
<td>1.5×10^{14}</td>
<td>6.6×10^{28}</td>
<td>0.46</td>
</tr>
<tr>
<td>HERMES</td>
<td>95</td>
<td>e^+</td>
<td>20×10^{3}</td>
<td>3.3×10^{14}</td>
<td>4.1×10^{31}</td>
<td>0.46</td>
</tr>
<tr>
<td>NIKHEF</td>
<td>95</td>
<td>e^-</td>
<td>80×10^{3}</td>
<td>7×10^{14}</td>
<td>3.5×10^{32}</td>
<td>0.50</td>
</tr>
<tr>
<td>SLAC(E154)</td>
<td>95</td>
<td>e^-</td>
<td>1.5</td>
<td>8×10^{21}</td>
<td>7.5×10^{34}</td>
<td>0.38</td>
</tr>
<tr>
<td>MAMI</td>
<td>97</td>
<td>e^-</td>
<td>7</td>
<td>5×10^{20}</td>
<td>2.2×10^{32}</td>
<td>0.50</td>
</tr>
<tr>
<td>JLab</td>
<td>98~</td>
<td>e^-</td>
<td>12</td>
<td>1×10^{22}</td>
<td>1×10^{36}</td>
<td>0.35~ 0.45</td>
</tr>
</tbody>
</table>
EXPERIMENTAL HALL A

Detector Package

- *Two VDCs* for tracking;
- *Sets of scintillators* for triggering on charged particles;
- *Gas cherenkov detector* for pion rejection;
- *Two layers of lead glass counters* for additional PID;
- *Pion rejection efficiency*: better than 10^{-4} with electron efficiency 99%.
OPTICAL PUMPING OF Rb

\[m_S = -\frac{1}{2} \quad \Rightarrow \quad m_S = +\frac{1}{2} \]

Collision Mixing

\[\vec{B} \quad \Rightarrow \quad 795 \text{ nm} \]

Non-Radiative Quenching (~96%) through Rb-N\(_2\) collisions

Zeeman Splitting

SPIN EXCHANGE DURING Rb-\(^3\text{He}\) COLLISIONS
TARGET SETUP

Four 30W Diode Lasers tuned to 795 nm

Main Holding Helmholtz Coil

RF Drive Coil

NMR Pick-Up Coils

RF Drive Coil

EPR Optics

EPR RF Coil

oven

e beam
NMR Polarimetry

- Adiabatic Fast Passage (AFP) is used to flip the nuclei spin;
- ^3He spin flip induces a signal in the pick-up coils;
- Signal height is proportional to the ^3He polarization;
- Signal is calibrated by performing NMR on a water cell – the thermal polarization of the proton.

![Signal from NMR Polarimetry](image)
EPR Polarimetry

- Rb Zeeman splitting \propto Magnetic field magnitude \vec{B};
- $P_{3\text{He}}$ induces a small component:
 \[\vec{B} = \vec{B}_{\text{main}} + \vec{B}_{3\text{He}} \]
 \[25 + 0.1 \text{ Gauss} \]
- ^3He spin flipped by AFP: $\vec{B}_{3\text{He}} \rightarrow -\vec{B}_{3\text{He}}$;
- Measure Rb resonance frequency shift: $\Delta \nu \propto B_{3\text{He}} \propto P_{3\text{He}}$.

EPR Spectrum AFP6_4_5_23am.dat

![EPR Spectrum](%eB%k+KAAAAAElFTkSuQmCC)
- Average in beam polarization:
 - ~35% during 1998-1999 run;
 - ~40% during 2001 run;
Asymmetry Analysis

Analysis Procedure

1. **Data**
 - Detector cuts
 - PID cuts
 - HRS acceptance cuts

2. **Relative yield N^±**
 - Elastic analysis
 - Sign convention
 - Δ(1232) asymmetry

3. **A_{raw}**
 - P_{beam}
 - f_{N_2}
 - P_{targ}

4. **Radiative corrections**

5. **A_{II}**, **A_{I}**
 - **A_{I}**
 - **A_{II}**
 - **A_{n}**
 - **A_{II}^n**
 - **A_{I}^n**

6. **Nuclear correction**
 - g_1/F_1
 - g_2/F_1
 - g^n_1/F^n_1
 - g^n_2/F^n_1

Detector cuts, **PID cuts**, **HRS acceptance cuts**

Elastic analysis, **Sign convention**, **Δ(1232) asymmetry**

Radiative corrections
Asymmetry Analysis

Electron Asymmetries

\[
A_{raw} = \frac{N^+}{\eta_{LT} Q^+} - \frac{N^-}{\eta_{LT} Q^-}
\]

\[
A_{\parallel, \perp} = \pm \frac{A_{raw}}{f_{N_2 P_b P_t}} + \Delta A^{RC}_{\parallel, \perp}
\]

\(^3\)He Asymmetries

\[
A_1 = \frac{A_{\parallel}}{D(1 + \eta \xi)} - \frac{\eta A_{\perp}}{d(1 + \eta \xi)}
\]

\[
A_2 = \frac{\xi}{D(1 + \eta \xi)} A_{\parallel} + \frac{1}{d(1 + \eta \xi)} A_{\perp}
\]

\[
g_1(x, Q^2) = \frac{F_1(x, Q^2)}{D'} \left[A_{\parallel} + \tan(\theta/2) \cdot A_{\perp} \right]
\]

\[
g_2(x, Q^2) = \frac{F_1(x, Q^2)}{2D' y \sin \theta} \left[\frac{E + E' \cos \theta}{E'} A_{\perp} - \sin \theta \cdot A_{\parallel} \right]
\]

From \(^3\)He to Neutron
ARE WE CONFIDENT ABOUT OUR MEASUREMENT?

- To check the “sign convention”, and to fully understand the system
 - Measured elastic $\vec{e}^+ - 3^7\text{He}$ longitudinal asymmetry and cross section;
 - Measured $\Delta(1232)$ transverse asymmetry;
- False asymmetry check.
Summary

Experiment E99-117
- Provide the first precise data of A_1^n and g_1^n at $x > 0.4$;
- Data on A_2^n and g_2^n also available;
- Polarized PDF $\Delta u/u$ and $\Delta d/d$ extracted from g_1^n / F_1^n results;

Impact
- Check current understanding of nucleon spin in the valence quark region;
- Check pQCD (HHC) – quark orbital angular momentum;
- Provide constraints to other models;
WHAT I DID

- Test runs - rate and PID efficiency
- Run plan optimization
- Target
 - Laser alignment
 - EPR polarimetry
- Data Analysis ...
FALSE ASYMMETRY CHECK

- Polarized beam and unpolarized 12C target;
- Kinematics: $E = 5.7$ GeV, $E' = 1.72$ GeV, $\theta = 35^\circ$.

- The false asymmetry is negligible compared to the statistical error of measured 3He asymmetries.
ELASTIC ASYMMETRY ANALYSIS

![Graph showing elastic asymmetry analysis with data points and error bars for left and right arm run numbers.](image-url)
$\Delta(1232)$ Transverse Asymmetry

- $A_\parallel^\Delta < 0$ and $A_\perp^\Delta > 0$
- E94010 data

![Graphs showing asymmetry measurements for left and right arm run numbers.](image)
Asymmetries

3He Raw Asymmetries

A_{\parallel}

A_{\perp}

x
3He Physics Asymmetries

(w/o radiative correction)
Radiative Corrections

- Correct $A_{\parallel}^{3}\text{He}$, $A_{\perp}^{3}\text{He}$;
- POLRAD 2.0 and Single Arm Monte-Carlo simulation;
- Update F_2, R, g_1, $\frac{g_1}{F_1}$;
- Uncertainty studied by variation in S.F.'s.
F_2 variation in Radiative Corrections

- $\Delta A_{\text{par}} = A_{\text{born}} - A_{\text{obs}}$ (%)

Data points:
- E99117 data (A_{par}/D)
- Aobs
- Aborn

Graphs showing variations in F_2 with x.
3He Results
$^3\text{He Results (cont.)}$
Polarized 3He as an effective neutron target

Effective nucleon polarizations:

$P_n = 86\%, P_p = -2.8\%$

3He $\approx \vec{n}$

Effective Neutron Target
From ^3He to Neutron (cont.)

CONVOLUTION APPROACH

- ^3He consists S, S', D

- Three body calculation using Fadeev wavefunction

\[g_1^n = \frac{1}{\rho_n}(g_1^{^3\text{He}} - 2\rho_pg_1^p) \]

\[A_1^n = \frac{W_1^{^3\text{He}}}{W_1^n}\frac{1}{\rho_n}(A_1^{^3\text{He}} - 2\frac{W_1^p}{W_1^{^3\text{He}}\rho_p A_1^p}) \]

COMPLETE ANALYSIS

F. Bissey et al., hep-ph/0109069

- S, S', D, Δ isobar in ^3He wavefunction

\[A_1^n = \frac{F_2^{^3\text{He}}}{P_n F_2^n(1 + \frac{0.058}{P_n})}[A_1^{^3\text{He}} - 2\frac{F_2^p}{F_2^{^3\text{He}}}P_p A_1^p(1 - \frac{0.014}{2P_p})] \]
Other Inputs

- \(R(x, Q^2) \) - E143, K. Abe et. al., hep-ex/9808028;
- \(F_2^p, F_2^D \) - NMC95, M. Arneodo et. al., hep-ph/9509406;
- EMC \(F_2^{3He} = \mathcal{R}^{3He} (2F_2^p + F_2^n) \), \(F_2^n = \frac{F_2^D}{\mathcal{R}^D} - F_2^p \), W. Melnitchouk, pri.comm.;
- Effective nucleon polarization \(P_p, P_n \)
 \[P_n = 0.86^{+0.036}_{-0.02}, P_p = -0.028^{+0.094}_{-0.004} \]
 - C. degli Atti et.al., Phys. Rev. C48, R968(1993);
- \(A_1^p \)
 - fit to world proton data;
- \(g_2 \), using \(g_2^{WW} \) since our \(Q^2 \) is reasonably large; (E155x)
COMPARISON BETWEEN TWO METHODS

\[(A_1^n)_{\text{compl}} - (A_1^n)_{\text{conv}} \approx \frac{F_2^n}{F_2} \frac{0.056}{P_n^2} A_1^{3\text{He}} - \frac{0.014 F_2^p}{P_n F_2^n} A_1^p.\]

- \((A_1^n)_{\text{compl}} - (A_1^n)_{\text{conv}} = 1 \sim 2\% \text{ for } 0.2 < x < 0.7\)
Result

A_1^n
Error Analysis

STATISTICS

- $\Delta A^n_1 = 2.4\%, 2.6\%, 4.8\%$ at $x=0.33, 0.48, 0.61$, respectively;

EXPERIMENTAL SYSTEMATICS

- Beam energy: $\frac{\Delta E_b}{E_b} < 5 \times 10^{-4}$, 5728.94 ± 1.52 MeV;
- Spectrometer momentum: $\frac{\Delta E_e}{E_e} < 5 \times 10^{-4}$;
- Spectrometer angle: $\Delta \theta_e < 0.06^\circ$;
- Beam polarization: $P_b = 79.73 \pm 2.4\%$;
- Target polarization: 40%, $\frac{\Delta P_t}{P_t} < 4\%$;
- Target spin orientation: $\Delta \theta_{targ} < 1^\circ$;

RADIATIVE CORRECTION

- F_2, g_1 and g_2 variation;

NUCLEAR CORRECTION

- $F^p_2, F^D_2, R^{3\text{He}}, R^D, A^p_1, P_p, P_n$.
A_1^n Error Analysis (cont.)
Results (cont.)

Curve: $g_1^n = \frac{q_1}{F_1}(E155) \times F_1(NMC95)$ at $Q^2 = 4.0 \text{(GeV/c)}^2$
Results (cont.)

Curve: A_2^{WW} from E155 fit, at $Q^2 = 4.0$ (GeV/c)2
Results (cont.)

Curve: xg_2^{WW} from E155 fit, at $Q^2 = 4.0 \text{ (GeV/c)}^2$
– The ultimate goal of polarized DIS is to understand how different quarks and gluons contribute to the nucleon spin, how are they polarized along the nucleon spin direction? – $\Delta q/q$

- Recall that

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i(x)] \quad \text{and} \quad g_1(x) = \frac{1}{2} \sum_i e_i^2 [\Delta q_i(x)]$$

- Assuming $s, \bar{s}(x)$ are negligible

$$\frac{g^n_1}{F^n_1} = \frac{\Delta u + 4\Delta d}{u + 4d}, \quad \frac{g^p_1}{F^p_1} = \frac{4\Delta u + \Delta d}{4u + d}$$

- Can extract $\frac{\Delta q}{q}$ as:

$$\frac{\Delta u}{u} = \frac{4}{15} A^p_1(4 + \frac{d}{u}) - \frac{1}{15} A^n_1(1 + 4\frac{d}{u})$$
$$\frac{\Delta d}{d} = \frac{4}{15} A^n_1(4 + 1/\frac{d}{u}) - \frac{1}{15} A^p_1(1 + 4/\frac{d}{u})$$

A_1^n and $\Delta q/q$ (cont.)
A_{1}^n and $\Delta q/q$ (cont.)
Pion Photoproduction Asymmetries

What can we learn from asymmetries in meson photoproduction?

- Sensitive to ΔG, Δq, and to differences among the existing models;

 $\uparrow \uparrow$

 (moderate p_T) (high p_T)

 A. Afanasev, C.E.Carlson and C. Wahlquist, hep-ph/9706522

- No calculation available for the JLAB kinematics range ($p_T \sim 1$ GeV/c)
Discussions (cont.)

\[\frac{g_1^n}{F_1^n} \]

- E99117\(^{(3}\text{He})\)
- E143\(^{(2}\text{H})\)
- E155\(^{(2}\text{H})\)

LSS 2001
\[\left(g_1^n/F_1^n, Q^2 = 5 \right) \]