Measurement of GPDs at JLab and in Future at Colliders

H. Avakian, V.Burkert, L.Elouadrhiri Jefferson Lab Electron-Ion Collider Workshop March 16

Physics Motivation

- Exclusive reactions and GPDs
 - >DVCS
 - Pseudoscalar mesons
 - ➢ Vector mesons
- Summary & Outlook

Physics Motivation

Describe the complex nucleon structure in terms of quark and gluon degrees of freedom.

>parton distributions

➤angular momentum

≻gluon polarization

•Exclusive production of photons and hadrons in hard scattering kinematics.

test QCD based predictions (assuming factorization) for different observables and restrict underlying GPDs.
studies of applicability of partonic picture in exclusive reactions

Electroproduction Kinematics

$$\sin \theta_{\gamma} = 2Mx \sqrt{1-y} / Q$$

Longitudinal and transverse polarizations mix by θ_{γ}

$$Q^{2} = -q_{1}^{2} = 4 EE' \sin(\theta / 2)$$

$$v = E - E'$$

$$x_{B} = -q_{1}^{2} / 2p_{1}q_{1} = Q^{2} / 2Mv$$

$$y = v / E$$

$$t = (p_{2} - p_{1})^{2} = \Delta^{2}$$

 $\gamma * -> \gamma$ require a finite longitudinal momentum transfer defined by the generalized Bjorken variable ξ

$$\xi = -\frac{(q_1 + q_2)^2}{2(p_1 + p_2)(q_1 + q_2)} \approx \frac{x_B}{2 - x_B}$$
$$\Delta_{\perp}^2 \approx (1 - \xi^2)(t - t_{\min})$$

CLAS 5.7 GeV: DVCS SSA

Higher energy increases kinematics range.
 Higher statistics allows binning of A_{LU} in Q², t, x_B

DVCS SSA kinematic dependences at 5.7 GeV

Fine binning allows to determine the x_B and Q^2 dependence

DVCS ongoing activities with CLAS at 5.7 GeV

- Extraction of kinematic dependences x, Q², t
- Extraction of the sin2¢ moment
- Cross section difference
- GPD studies using measured kinematic dependences of SSA
- Measurement of DVCS SSA with longitudinally polarized target at CLAS

DVCS near future measurements at JLAB

- Reconstructing all 3 final states.
 - HALL-A (2004): Cross section differences (L= 10^{37} cm⁻² sec⁻¹),
 - HALL-B (2005): SSA and cross section difference over the wide kinematic range (L=2.10³⁴cm⁻² sec⁻¹)

DVCS with longitudinally polarized target (CLAS++)

A_{UL} ~
$$\pm \frac{x_{B}}{y} \frac{s_{1, LP}^{T}}{c_{0, unp}^{BH}} \propto \frac{x_{B}}{2 - x_{B}} (F_{1} + F_{2}) \left(\mathcal{H} + \frac{x_{B}}{2}\mathcal{E}\right) + F_{1}\widetilde{\mathcal{H}} - \frac{x_{B}}{2 - x_{B}} \left(\frac{x_{B}}{2}F_{1} + \frac{\Delta^{2}}{4M^{2}}F_{2}\right) \widetilde{\mathcal{E}}$$

SSA Sensitive to
polarized GPDs
•Transverse target DVCS
asymmetry is sensitive to GPD E
•Polarized target DVCS SSAs will
provide access to different
combinations of GPDs important
for their separation.

Δ -VCS or ep->e' $\gamma\Delta$) at 11 GeV

Transition GPDs (large $N_c C_1 \approx \widetilde{H}$) Background to DVCS Background to pion production

Meson production in GPD framework

Only longitudinal photons

- Different final state mesons filter out different combinations of unpolarized (H,E) and polarized (H,E) GPDs.
- 2. Studies at 6-12GeV provide information on how far is the asymptotic regime and guide theory in describing HT.

	Meson	GPD flavor
		composition
	π^+	$\Delta u - \Delta d$
	π^0	$2\Delta u + \Delta d$
	η	$2\Delta u - \Delta d$
	ρ^0	2u+d
;	ρ^+	u-d
	ω	2u-d

Hard Exclusive Meson Production(HMP)

Belitsky hep-ph/0307256 (ep->e' π +n)

SSA in exclusive pion production

2 pion electroproduction Kinematics

isoscalar channel accessible in θ distributions of 2 pions (hep-ph/9910310)

Exclusive ρ and L/T ratio

L/T ratio from exclusive ρ data at minimum beam energy where DIS kinematics accessible, is consistent with measurements at higher energies.

16

Exclusive p measurements

Exclusive ω production $e^{-p} \rightarrow e^{-p} \omega$

 $\longrightarrow \pi^+ \pi^- \pi^0$

18

Transversity GPDs with exclusive ρ , ρ +

Summary

- Exclusive γ and ρ production provided first glimps of GPDs at moderate energies.
- Global analysis of different exclusive reactions in hard scattering will allow separation and flavor decomposition of different parton distribution functions.
- Collider measurements, requiring high luminosity (L~10³⁵cm⁻² sec⁻¹), and wide coverage, will vastly increase the kinematics and the scope of observables providing access to essentially unexplored parton distributions.

DVCS A_{LU} extracted from MC (ep->e'p'[γ])

Exclusive p+ at 6 GeV

DVCS with polarized beam with CLAS⁺⁺ at 11 GeV

The CLAS Detector

CEBAF

8°<θ<140°

• $\sigma_p/p\sim 0.5\% \ (\theta < 30^{\circ})$

• $\sigma_p^{r}/p \sim 1-2\% (\theta > 30^{\circ})$ • $\sigma_{\theta} = 1 mrad, \sigma_{\phi} = 4 mrad$

~ 200 physicists

37 institutions

DVCS SSA kinematic dependences at 5.7 GeV

DVCS MC: separating DVCS photons

