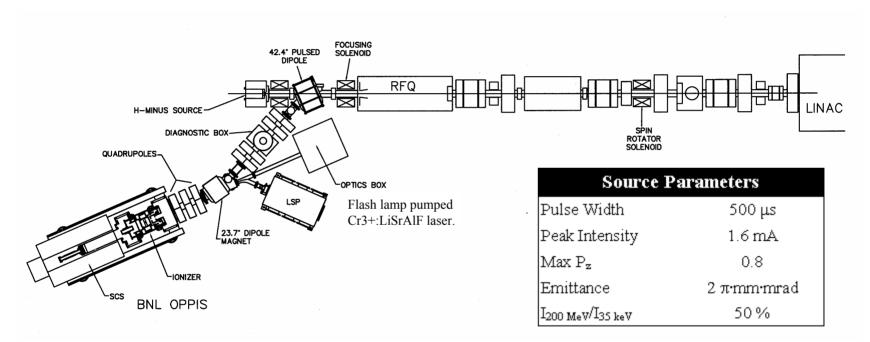


Polarized Ion Sources

V.Derenchuk, Ya.Derbenev, V.Dudnikov


Second Electron-Ion Collider Workshop, Jefferson Lab, March 15, 2004

The OPPIS

POLARIZED SOURCE LAYOUT AT THE LINAC INJECTOR

Allows interleaving of 1 mA polarized H– beam and 100 mA unpolarized beam on pulse-to-pulse basis. Longitudinal polarization out of the source converted to vertical polarization at the linac entrance. A. Zelenski, SPIN 2002 Symposium, BNL, September 2002.

March, 2004 EIC Workshop

V.P.Derenchuk 2

Potential H⁺/H⁻ Source Parameters

Techniques:

- Atomic Beam Source with Resonant Charge Exchange Ionizer, eg., IUCF/INR CIPIOS with improvements.
- Optically Pumped Polarized Ion Source, eg., BNL OPPIS

Claimed Future Potential*:

```
ABS/RX Source:

H<sup>-</sup> ~10 mA, 1.2 π·mm·mrad (90%), Pz = 85%

H<sup>+</sup> >20 mA, 1.2 π·mm·mrad (90%), Pz = 85%

OPPIS

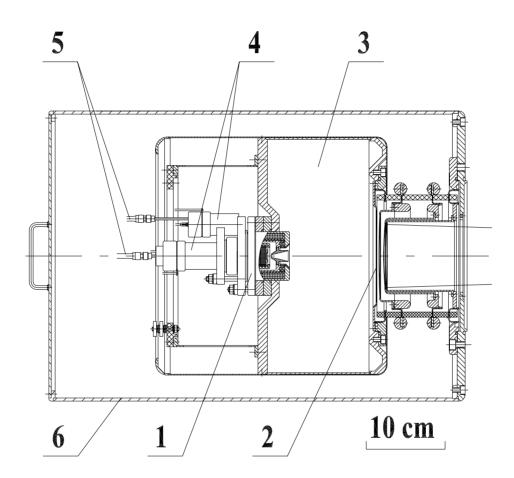
H<sup>-</sup> ~40 mA, 2.0 π·mm·mrad (90%), Pz = 85%

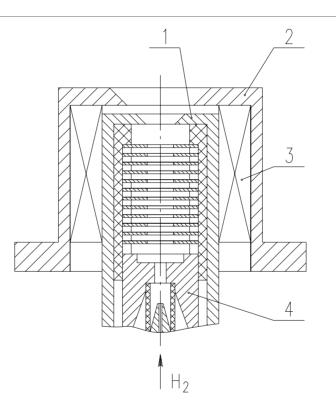
H<sup>+</sup> ~40 mA, 2.0 π·mm·mrad (90%), Pz = 85%
```

* Estimates are based on projections of existing source parameters. These characteristics seem feasible but must be proven.

Potential D⁺/D⁻ Source Parameters **Techniques:** Atomic Beam Source with Resonant Charge Exchange Ionizer, eg., IUCF/INR CIPIOS with improvements. Optically Pumped Polarized Ion Source, eg., KEK OPPIS Claimed Future Potential*: ABS/RX Source: **D**⁻ ~10 mA, 1.3 π·mm·mrad (90%), Pz = 90%, Pzz=90% **D**⁺ >20 mA, 1.3 π ·mm·mrad (90%), Pz = 90%, Pzz=90% **OPPIS D**⁻ ~40 mA, 2.0 π ·mm·mrad (90%), Pz = 55%, Pzz=? **D**⁺ ~40 mA, 2.0 π·mm·mrad (90%), Pz = 55% , Pzz=? * Estimates are based on projections of existing source parameters. These characteristics seem feasible but must be proven.

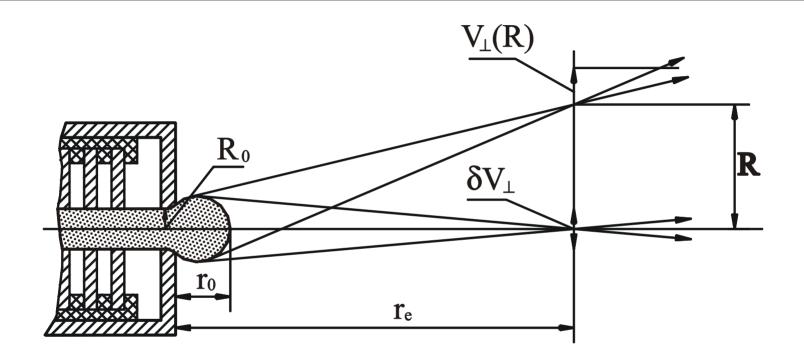
ψ


Indiana University Cyclotron Facility



Short pulse ion source

1- plasma generator, 2- electrodes of the ion optical system, 3- plasma expansion volume, 4- gas puffing valves, 5- HV feedthrough, 6- magnetic screen.



1- anode, 2-magnetic shield, 3- coil, 4-anode $I_d \approx 200-800A$, $U_d \approx 60-80V$, $\tau_d \leq 0.5$ s, $J_i \leq 180$ A

Low ion temperature in the plasma stream

 $\begin{array}{ll} {\sf R}_0 \thicksim 0.3 \ \text{cm} & n_0 \thicksim 10^{14} \ \text{cm}^{-3} & {\sf T}_{i0} \thicksim 3\text{-}5 \ \text{eV} \\ {\sf r}_0 \thicksim 1 \ \text{cm} & {\sf T}_{ie} \approx {\sf T}_{i0} \ {\sf r}_0^2 / {\sf r}_e^{-2} \\ {\sf Experimental value of} & {\sf T}_{ie} \approx 0.2 \ \text{eV} \end{array}$

March

Existing Source Parameters

OPPIS/BNL, H ⁻ only:	Pulse Width	500 µs (up to DC?)
(In operation)	Peak Intensity	>1.6 mA
	Max Pz	85% of nominal
	Emittance (90%)	2.0 π·mm·mrad
IUCF/INR CIPIOS:	Pulse Width	Up to 500 µs
(Shutdown 8/02)	Peak Intensity H-/D-	2.0 mA/2.2 mA
	Max Pz/Pzz	85% to > 90%
	Emittance (90%)	1.2 π·mm·mrad
INR Moscow:	Pulse Width	> 100 µs
(Test Bed Only)	Peak Intensity H+/H-	11 mA/2.5 mA
	Max Pz	80%/85%
	Emittance (90)%	1.0 π·mm·mrad/ 1.8 π·mm·mrad

Polarized ³He⁺⁺ Options

Spin Exchange in Optically Pumped Rb

with EBIS Ionizer (Zelenski)

- Polarization of 50% 70% expected.
- ~ 2 x 10^{11} particles/pulse, small emittance.

Resonant Charge Exchange

of Polarized Atoms with ⁴He⁺⁺ (Belov)

- Polarization of ~ 70% 80%.
- > 1mA beam current with 1 π ·mm·mrad.

Note: No existing high current polarized ³He⁺⁺ source using these techniques exists.

Polarized ⁶Li⁺⁺⁺ Options

Existing Technology:

- Create a beam of polarized atoms using ABS.
- lonize atoms using surface ionization on an 1800 K Tungsten foil singly charged Li of a few 10's of μA
- Accelerate to 5 keV and transport through a Cs cell to produce negative ions. Results in a few hundred nA's of negative ions.

Investigate alternate processes such as EBIS ionizer proposal or ECR ionizer. Should be possible to get 1 mA? fully stripped beam with high polarization.

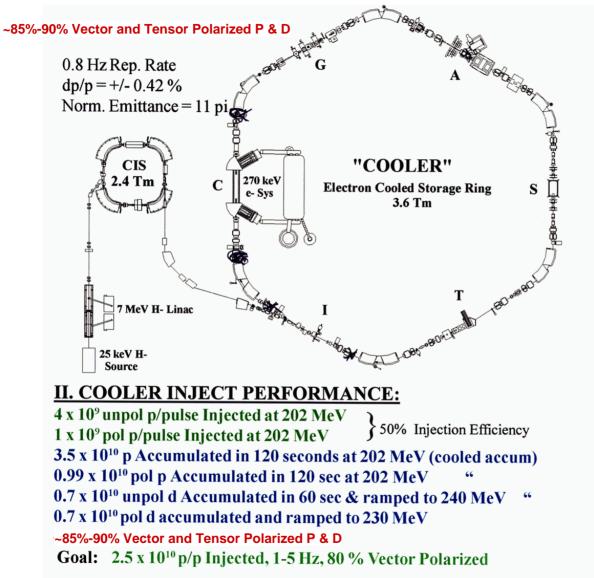
Properties of ⁶Li: $B_c = 8.2 \text{ mT}$, $m/m_N = 0.82205$, I = 1

 B_c = critical field *m*/*m*_N = *magnetic moment*, *I* = *Nuclear spin*

Polarized ⁶Li⁺⁺⁺ Options

Existing Technology:

- Create a beam of polarized atoms using ABS.
- Ionize atoms using resonant charge exchange with Li ions from Arc discharge source, as for H⁺, and He⁺.
- Accelerate to 5 keV and transport through a Cs cell to produce negative ions. Results in a few hundred mcA's of negative ions.


Investigate alternate processes such as EBIS ionizer proposal or ECR ionizer. Should be possible to get 1 mA? fully stripped beam with high polarization.

Properties of ⁶Li: $B_c = 8.2 \text{ mT}$, $m/m_N = 0.82205$, I = 1

 B_c = critical field *m*/*m*_N = *magnetic moment*, *I* = *Nuclear spin*

IUCF Kick Injection with e-Cooling

V.P.Derenchuk 13