

Polarized Electron Source for eRHIC (the ring-ring option)

<u>M. Farkhondeh</u>, Bill Franklin and T. Zwart

Second EIC Workshop, Jefferson Lab, March 15-17, 2004

OUTLINE

- Basics of polarized electron sources
- Polarize source requirements for a ring-ring eRHIC
- Options for the laser system and the injector
- R&D for eRHIC polarized source

Photoemission from GaAs based photocathode

Second EIC Workshop, J-Lab, March 15-17, 2004

High polarization Photocathodes

High Gradient doped GaAsP photocathode

Second EIC Workshop, J-Lab, March 15-17, 2004

Surface Charge limit effect

Increasing Charge limit:

- Increase doping concentration
- superlattice structure
- large band-gap material
- larger cathode area to lower power density

Surface Charge limit effect

PT1 shape for BWSC-SLAC 4/22/2002

Macroscopic Time structure for eRHIC

Second EIC Workshop, J-Lab, March 15-17, 2004

Time structure for eRHIC

Figure 3: schematic diagrams of microscopic bunch structure (top) and the macroscopic pulse structure (bottom). The duty factors are $2x10^{-3}$ and $1x10^{-4}$ respectively. The overall duty cycle of the injector and linac is $2x10^{-7}$.

Second EIC Workshop, J-Lab, March 15-17, 2004

٠

Peak current requirements for eRHIC

- 450 mA average current in the ring and 120 bunches
- 10 minutes fill time at 25 Hz injection \rightarrow 15000 pulse trains stacked bunches from the injector each 1.3 pC and ~70-100 ps wide (I=dQ/dt)

18-20 mA peak current in linac

(instantaneous current within each bunch)

$$I(mA) = \frac{QE. P(mW)\lambda(nm)}{1240}$$

With QE of 5×10⁻⁴, λ=800nm, would need ≥ 50 Watts of laser power.

Polarized injector options

Option 1 Mode locked laser:

In this option all bunch manipulations and synchronizations are made on the laser light before directed to the photocathode. No chopping and bunching of the electron beam may be necessary (J-lab, G_0 Experiment).

Option 2: CW high power diode laser

In this option, quasi CW laser light (4.3 μs long) produces photoemission of polarized electrons. All pulse manipulation, synchronizations are made on the electron beam using chopper and bunchers (MIT-Bates)

Option 1:

P_{peak} =150 W

Figure 4. Schematic diagram of mode locked laser option for the eRHIC electron injector.

For ring I_{av} =450 mA, need P_{peak} =50 W I_{peak}=18 mA from injector

Second EIC Workshop, J-Lab, March 15-17, 2004

M. Farkhondeh

10

Mode locked laser system at J-lab

J-lab GO laser would produce ~150 W "equivalent" power for each bunch. Adequate power if surface charge limit effect is small.

Option 2:

Second EIC Workshop, J-Lab, March 15-17, 2004

High Power Diode array laser system at MIT-Bates

In use for several years, extremely reliable. 102 MHz bunching would further ease the requirements.

Second EIC Workshop, J-Lab, March 15-17, 2004

Peak current vs laser power

Second EIC Workshop, J-Lab, March 15-17, 2004

Source R&D at Bates using test beam setup

• A Unique opportunity at Bates beyond FY05 to do R&D on the eRHIC polarized source both for the ring-ring and the linac-ring requirements.

• Both the expertise and hardware exist.

MIT-Bates 60 keV test beam setup

Summary

•Two options for eRHIC (ring-ring) polarized injector presented in the ZDR.

- For option one: Precise timing synchronization of the laser is required.
- For option two: Precise timing of the chopping/bunching of the e beam is required.
- For FY06-08 MIT-Bates is Proposing R&D related to the eRHIC polarized source requirements.
- Also proposed R&D related to the polarized source requirements for the linac-ring architecture of eRHIC that needs polarized beams at very high average currents.

End of Presentation

Second EIC Workshop, J-Lab, March 15-17, 2004

M. Farkhondeh

17

eRHIC electron beam parameters

	Quantity	Value	Unit
Collider Ring	Stored current Frequency	480 28.	mA MHz
	Ring circumference Number of bunches in the ring Charge per macroscopic bunch	4.3 120 20	μs nC
	stacking: pulse train rep. rate Duration Total pulse train from injector Charge per bunch e per bunch	25 10 15,000 (25x10x60) 1.3 8xE+6	Hz minutes pC
Photocathode	Bunch duration Bunch charge Peak current	~70 1.3 20	ps pC mA
Linac	Microscopic duty cycle (within 4.3 us) Macroscopic duty cycle during fill Macropulse average current Average current during fill	2x10 ⁻³ 1x10 ⁻⁴ 40 4	µA nA

Macroscopic Time structure for eRHIC

Non-collider Storage ring (Bates SHR)

Second EIC Workshop, J-Lab, March 15-17, 2004

- Both options are discussed in the ZDR.
- Both would work with NC or SC linacs.

•Questions:

• Is there enough laser power to meet the requirements?

Yes, for both options. More laser power would prolong source lifetime.

 Does the chopping and bunching scenario in option 2 work as expected.

Most likely it will, but need simulations and R&D

• Is charge limit effect a major problem?

1.3 pC charge per bunch, Not a major problem, ways to overcome

