2nd Electron Ion Collider Workshop March 15-17, 2004 Jefferson Lab

Lattice /Detector Integration for Target Fragmentation, Diffraction, and other Low-*t* Processes

Charles Hyde-Wright Old Dominion University Chyde@odu.edu

Forward Tagging

- Electron-Ion collider offers unique opportunities for tagging particles emitted in the forward direction at very low momentum transfer:
 - Target Fragmentation in DIS
 - Recoil proton or nucleus in exclusive DVCS and Deep Virtual meson production
 - Spectator tagging in Quasi-Free reactions N(e,e')X:
 - D(e,e'p)X, D(e,e'n)X
 - Zero degree electron scattering for tagging of Quasi-Real photons.

ELIC Baseline Design

- 5 GeV/c (electron) \otimes 50 GeV/c proton
 - Luminosity $L = 10^{34}/cm^2/s$
- Nuclear beams ^AZ,
 - Magnetic rigidity K = A P / (Ze) = 50 GV/c
 - N=Z nuclei, $P_A = (A/2) P = (25 \text{ GeV/c}) A$
 - Luminosity $L_A = L A^2/Z^4$
- Crab crossing at 100 mrad
- Longitudinal & Transverse momentum spread
 - $\sigma_{\perp} = \sigma_{||} = 3 \cdot 10^{-4}$
 - Longitudinal acceptance $\delta P = 0.3\%$
 - Transverse Beam Stay Clear??

Zero degree electron scattering

- Singles rates dominated by Bremsstrahlung e Z \rightarrow e Z γ
 - Ion beam Radiation Length : $X_0 (^{A}Z^{Z_+}) = [A/Z^2] 7 \cdot 10^{25} / cm^2$

Tagging rate

$$d\Phi_{\gamma} = \frac{dk_{\gamma}}{k_{\gamma}} \frac{L_e}{X_0}$$

$$\int_{0.5}^{0.95} \frac{d\Phi_{\gamma}}{dk_{\gamma}} \frac{dk_{\gamma}}{k_{\gamma}} = 10^8 Hz @ L = 10^{34}$$

- (e,e'x) Coincidence rates dominated by quasi-real photon true coincidences
- Tagging spectrometer (extended 'C' magnet) for first dipole on one IP
 - $0.5 < k_{\gamma} / E_e < 0.95$ (photon)
 - $0.05 < E_e' < 0.50$ (scattered electron)

Hadron Beam tagging

- DVCS: $ep \rightarrow ep\gamma$
 - Form 3D image of proton as a function of quark wavelength
 - Size = $[1 \text{ fm}] \ln(1/x) = 5 \text{ fm at } x = 0.01$
 - ELIC, *x* > 0.01 for Q²> 5GeV²
- Proton recoil
 - P' = P(1-x), resolve shift xP from beam momentum P
 - P_{\perp} , resolve 0.2GeV/ln(1/x) = 40 MeV/c at x=0.01
 - $P_{\perp} / P > 10^{-3} = 3\sigma$ at IP
 - x>3E-3 separated (=0) in first 100m
 - Require 2cm radius aperture in all elements
 - Require 2 x 10cm drift space before and after each dipole.

Phase Space Densities (Wigner Distributions) of Quarks inside the Proton, for Short, Medium, and Long wavelength quarks.

Courtesy, X. Ji, UMd

DVCS: Recoil proton tagging in lattice

- Ring acceptance x < 0.003
- Tag protons with x > 0.003
 - Trackers (Si...), 2 cm I.d., 4 cm. O.d. just after and just before each dipole in first few dipoles of ring.
 - Resolve (1-x)P and P_{\perp} .
 - Compact detectors, with 1m drift space.
 - Roman Pot Design (reinsertion after fill)?
 - Lattice apertures should accommodate larger acceptance.
 - Expanded magnet aperture for detectors inside magnets.

N* decay veto

- Resolve e p \rightarrow e p γ from
- $e p \rightarrow e N^* \gamma \rightarrow e N \pi \gamma$
 - π has long. momentum (m/M)P = P/7
 - π has typical transverse momentum m
 - $\theta = 7m/P = 20 mr$
 - π^0 2 photon opening angle = 7m/P = 20 mr
 - Fine grained calorimetry in front of FF Quad.
 - Recoil neutron $\theta = 7m/(6P) = 0.3 \text{ mr} \rightarrow ZDC$
 - Recoil proton P+ = (6/7) P
 - 133 mrad bend in Crab crossing dipole.

Neutron Detection

- Detect neutrons at zero degrees
 - Nuclear beam momentum AP/Z = 50 GeV
 - P = 25 GeV per nucleon
 - Aperture
 - $\theta = 200 \text{ MeV/ P}$
 - = 200 MeV/25 GeV = 8 mrad
 - Aperture = 2.4 cm at final focus quad (3m). =
 - Hadron Calorimeters (20 cm length) before final focus
 - Roman Pot design needed between crab crossing dipole and final focus quad
 - Aperture 2 cm at 6 m \rightarrow angle>3 mrad
 - 3 cm at 10m ZDC

Deuterium Quasi-Free

- Deuteron
 - Magnetic rigidity K = 50 GeV = AP/Z
 - P = 25 GeV/nucleon
- Spectator proton
 - K' = 25 GeV
 - Lattice transport should allow detection of these protons.
- Deuteron bends 100 mr in crab crossing dipole.
- Proton will bend 200 mr!!
 - Need a C-magnet tagging spectrometer design or tracking detectors inside magnet.
 - Point-to-point focus with post-IP quadrupole

Nuclear Quasi-Free

- Beam rigidity = K = AP/Z
- ^AZ(e,e'^{A-1}Z)X, [quasi-free on neutron]
 - Magnetic Rigidity of daughter
 - K(A-1)/A<K
- ${}^{A}Z(e,e'{}^{A-1}[Z-1])X$
 - Magnetic Rigidity of daughter
 - K Z (A-1)/[(Z-1)A] > K

Tracking needed at both large and small radius in first dipoles

Nuclear Decay fragments

- Quark fragmentation, measure nuclear temperature:
- Evaporation neutrons near 0-deg
- Evaporation protons at rigidity P < AP/Z

Conclusions

- First few elements in lattice should be designed with thought to detection of forward fragments
- Compact detectors near Odeg can enhance physics program.