Current Fragmentation in SIDIS

Stefan Kretzer

Brookhaven National Laboratory & RIKEN-BNL

EIC workshop, Jlab, March 15, 2004

Work in (continuous) progress. Based on collaborations with E. Christova, E. Leader, F. Olness, M. Stratmann, W.-K. Tung, W. Vogelsang,...

<u>http://www.pv.infn.it/~radici/FFdatabase/</u> maintained by M. Radici (Pavia) and R. Jakob (Wuppertal)

siteman							
<u>internale</u>		sitemap text on FF references parametrization	ons links ESOP				
text on FF							
references	sitemap:						
parametrizations	sitemap (this page)						
links	text on fragmentation <u>functions</u> (/FFdatabase/text.html)	references related to fragmentation functions (/FFdatabase/references.html)	parametrizations ("/FFdatabase/parametrizations.html)				
this database is a project of the <u>ESOP</u> network	parton distribution functions (PDFs)	operator definitions of PDFs and FFs	Stafan Kratzer	NEW			
	unintegrated PDFs	information on PDFs / parametrizations	on PDFs / parametrizations Stelian Kreizer on FFs / parametrizations Knichl, Kramer, Pötter FFs Stelian Kreizer FFs / scaling violations Bourbis, Fontannaz, Guillet, Werlen (soon to come)	all three combined in one <u>FORTRAN</u> <u>library</u> (courtesy of S.Kretzer)			
	fragmentation functions (FFs)	information on FFs / parametrizations					
	unintegrated FFs	models for FF's					
	multiple-hadron FFs	evolution of FFs / scaling violations					
	models calculations	target fragmentation and fracture functions					
adici and <u>Rainer Jakob</u>	target fragmentation and fracture functions	more references (still not properly sorted)					
ast modified: Thu, May 4, 2002 11:15	more interacting and useful links						
	more interesting and userin links						
	any comments, suggestions and a	dditional information helping to complete or upda	te this list are highly welcome and	d will be appreciated			
		send mail to: Marco Radici or Raine	r Jakob				
	sena man to, stareo Radiel of Kamer Jakoo						

Parton-Distribution and Parton-Fragmentation Functions from Global Analysis

Some Theory ...

Parton Distributions:
Local operator product expansion in <u>inclusive</u> DIS
Bilocal operator definition
 $f(x,\mu^2) \propto$ $f(x,\mu^2) \propto$ <

Just as PDFs, FFs are well defined in terms of $\psi \ \epsilon \ \mathcal{L}_{\text{QCD}}$

Scale dependence enters through renormalization: DGLAP

$$\frac{\partial f_i(x,\mu^2)}{\partial \ln \mu^2} = \sum_j P_{ij} \otimes f_j \qquad \qquad \frac{\partial D_i(x,\mu^2)}{\partial \ln \mu^2} = \sum_j P_{ji} \otimes D_j$$

Factorization Theorem in Practice: Inclusive Hadron Production and its Ingredients

SIDIS: make $f_a a \delta(1-x)$

Factorization, Renormalization, Fragmentation:

How many scales are there actually?

- In principle 3, but:
 - A strict handling is *very* unpractical.
 - A loose handling does not really improve on setting them all equal:

$$\mu_F^{\text{initial}} = \mu_R = \mu_F^{\text{final}} \equiv \mu \simeq p_\perp^h$$

 $\alpha_s(\mu) \ln \left(p_\perp^h / \mu \right) \simeq 0$

Operative Role of FFs

 $(\Delta)\sigma(Q) = (\Delta)\mathsf{PDF}\left(\frac{\mu}{\Lambda}\right)\hat{\sigma}\left(\frac{Q}{\mu}\right)\mathsf{FF}\left(\frac{\mu}{\Lambda}\right)$

- In a semi-inclusive process, each FF q! hX weighs the contribution of PDF "q" differently
- Fix FFs in unpolarized reactions, "divide them out" from the polarized data.
- Monte Carlos are *not* (necessarily) the same: "Data / FF = PDF"
 "Data / MC-hadronization ≠ PDF"

Uncertainties in FFs and their impact on polarized PDFs (here from SIDIS)

χ^2 Analysis of e⁺e⁻ Data (LEP, SLD, TPC)

$$\chi^2 \equiv \left(\frac{\text{Theory} - \text{Measurement}}{\text{Error}}\right)^2$$

From: Nucl. Phys. **B597**, 337 (2001) (KKP)

Energy	Flavour	Experiment	FF Set			No. of
[GeV]			KKP	K	BFGW	Points
29	uds	TPC	0.178^{*}	0.159	0.167^{*}	7
	с		0.876*	0.911	0.923^{*}	7
	ь		2.23^{*}	1.21	1.14^{*}	7
91.2	all	DELPHI	1.28	1.51^{*}	1.49	12
		SLD	1.32	0.370	0.421	21
	uds	DELPHI	3.17^{*}	0.990*	1.95	13
		DELPHI	0.201	0.588^{*}	1.00*	12
	c	DELPHI	0.473^{*}	0.388^{*}	0.401	11
	ь	DELPHI	28.9^{*}	0.887^{*}	1.03	12
		DELPHI	0.433	9.14^{*}	8.74	12
189	all	OPAL	0.568*	0.250^{*}	0.414^{*}	11

Alternative model approaches:

Indumathi et al.

Soffer et al.

Kniehl, Kramer, Pötter

Bourhis, Fontannaz, Guillet, Werlen

Kretzer

• Charged Pions, Kaons and Sum over Charged Hadrons (a) SLD ($\sqrt{S} = M_Z$) and TPC ($\sqrt{S} = 29 \text{ GeV}^2$) lifetime tagging unfolded to pure flavor samples

> 0.5 0.6 0.7 0.8

> > TPC

s = (29 GeV)

oΣh

 $= \pi^{\pm} (\times 0.1)$

.....

• Leading Particles @ SLD

$$\begin{aligned} R_h^q &= \frac{1}{2N_{evts}} \frac{d}{dx_p} \left[N(q \to h) + N(\bar{q} \to \bar{h}) \right] \\ R_{\bar{h}}^q &= \frac{1}{2N_{evts}} \frac{d}{dx_p} \left[N(q \to \bar{h}) + N(\bar{q} \to h) \right] \end{aligned}$$

How Well Do we now FFs in practice?

• What is determined by the e^+e^- data ? $D_{\text{meas}}^{\pi^{+}+\pi^{-}} = \sum_{q=u,d,s} \left(D_{q}^{\pi^{+}+\pi^{-}} + D_{\bar{q}}^{\pi^{+}+\pi^{-}} \right) \hat{e}_{q}^{2}(s)$ $\hat{e}_a^2(s)$: SU(2) × U(1) $\hat{e}_{u}^{2}(s) = \hat{e}_{d}^{2}(s)$ @ $\sqrt{s} = 78,113 \text{ GeV}$ $\hat{e}_{u}^{2}(s)/\hat{e}_{d}^{2}(s)\Big|_{s=M_{\pi}^{2}} \simeq 3/4$ The singlet combination $D_{\Sigma}^{\pi^{+}} \equiv \left(D_{u}^{\pi^{+}} + D_{\bar{u}}^{\pi^{+}} + D_{d}^{\pi^{+}} + D_{\bar{d}}^{\pi^{+}} + D_{\bar{s}}^{\pi^{+}} + D_{\bar{s}}^{\pi^{+}} \right)$ $= 2 \left(D_u^{\pi^+} + D_d^{\pi^+} + D_s^{\pi^+} \right)$ within extreme flavour assumptions $0 < (D_{\pi}^{\pi^+} + D_{\pi}^{\pi^+}) < (D_{\pi^+}^{\pi^+} + D_{\pi^-}^{\pi^+})$ is fixed by e^+e^- data to ~ 5%: $\tilde{D}_{\text{mass}}^{\pi^+ + \pi^-} = D_{\text{mass}}^{\pi^+ + \pi^-} / \hat{e}_d^2(s)$ $D_{\Sigma}^{\pi^{+}} = \frac{4}{2} \tilde{D}_{\text{meas}}^{\pi^{+} + \pi^{-}} - \frac{1}{2} \left(D_{s}^{\pi^{+}} + D_{\bar{s}}^{\pi^{+}} \right)$ $\hookrightarrow \frac{4}{\pi} \tilde{D}_{\text{meas}}^{\pi^+ + \pi^-} < D_{\Sigma}^{\pi^+} < \frac{6}{11} \tilde{D}_{\text{meas}}^{\pi^+ + \pi^-}$ And similar estimates hold for $D_{\Sigma}^{\Lambda,K}$.

Light flavour Separation from SIDIS: E. Christova, SK, E. Leader

Digested summary on e⁺e⁻ annihilations:

- Determine mainly $D_{\Sigma}(\mu' M_Z)$
- Do not constrain:
 - Flavour decomposition
 - Gluon fragmentation
 - large z
- Precise data at low scale desirable (BELLE)
- More processes have to be included into global analysis

Flavour Separation from SIDIS

SIDIS data and pQCD expectations

HERMES multiplicities: $d\sigma(z) / s d\sigma$

Is σ_{sidis} ' q(x)D(z) at not-so-high Q? And if not ... then what?

Target Fragmentation: $z \neq z$

z E^{π} / E^{π}_{max} scaled in the target frame or in the nucleon boson frame lead to different phase space integrals.

- z = E^h / v > 0.2 (target frame, standard definition) cuts out target fragmentation (*fracture*) contributions.
- Monte Carlo (JETSET ≠ pQCD) study finds such contributions (Kotzinian 03) are large.

Monte Carlo approach is different from pQCD even qualitatively. Sanity check: Factorization!

What Factorization?

Factorization \neq Factorization

The pQCD Factorization is a statement about the seperation of scales in $\sigma(Q) = \mathsf{PDF}\left(\frac{\mu}{\Lambda}\right) \hat{\sigma}\left(\frac{Q}{\mu}\right) \mathsf{FF}\left(\frac{\mu}{\Lambda}\right)$ The LO DIS process is so simple, indeed is just a vertex / $\delta(1-x) \delta(1-z)$ so that $\sigma(x,z)$ / F(x)D(z): The approximate (LO) factorization of x and z dependence (following from the one-particle "phase space" of LO DIS) Factorization ' Factorization for SIDIS

HERMES DIS π multiplicities

(unpolarized hydrogen target)

HERMES DIS π multiplicities (unpolarized hydrogen target)

The z dependence (averaged over x) follows roughly the expectations from $e^+ e^-$ annihilations

The x dependence is too pronounced for an NLO QCD effect. The correlated $\{x, Q^2\}$ dependence shows deviations towards low x ' 0.05, i.e. low Q^2 ' 1 GeV².

• Maybe we are observing stronger subleading $1/Q^2$ effects than in the inclusive $F_2(x,Q^2)$??

Hadroproduction (RHIC)

Recent p-p Data from PHENIX and STAR at central and forward rapidity

Differences between KKP and "Kretzer" FF can be traced, mostly, to $D_q^{\pi}(z)$

The Gluon Fragmentation Function has been measured

Hasn't it ?

Not quite, but we can extract it from global analysis. • Gluon Fragmentation in $b\bar{b}g$ 3-jet topologies

experimental Fragmentation Function

$$D_g^h(x_E,\mu^2) \equiv \frac{1}{N_{\text{tot}}} \; \frac{\Delta N_g^h}{\Delta x_E}; \quad x_E \equiv \frac{E_h}{E_g^{\text{jet}}}$$

Partonometry of inclusive pion production in hadron collisions at RHIC energies

The following is a *technical* decomposition into parton processes

Fractional contributions from initial/final state partons

Central Rapidity

Forward Rapidity

Average Scaling Variables

- Symmetric / asymmetric kinematics for central / forward rapidity Large z fragmentation is probed. The largest z are probed by the forward rapidity data where quarks with very large x are probed as well. Note: There is a
- Note: There is a difference in scale as well: It varies from small to large for central rapidity, whereas it's small throughout for forward rapidity.

Partonic strangeness asymmetry $(s - \bar{s})(x)$

Probes baryon-meson fluctuations and borderline between pQCD and non-pQCD

Enters precison physics via the "NuTeV anomaly"

Is uncertain at present, with little future perspective other than, perhaps, from SIDIS

And phenomenology from:

...

Figure 1: The momentum distributions for the strange quarks and antiquarks in the light-cone meson-baryon fluctuation model of intrinsic $q\bar{q}$ pairs, with the fluctuation wavefunction of $K^+\Lambda$ normalized to 1. The curves in (a) are the calculated results of s(x) (solid curves) and $\overline{s}(x)$ (broken curves) with the Gaussian type (thick curves) and power-law type (thin curves) wavefunctions and the curves in (b) are the corresponding $\delta_s(x) = s(x) - \overline{s}(x)$. The parameters are $m_q = 330$ MeV for the light-flavor quark mass, $m_s = 480$ MeV for the strange quark mass, $m_D = 600$ MeV for the spec-V. Barone & C. Pascaud & F. Zomer (2000) tator mass, the universal momentum scale $\alpha = 330$ MeV, and the power constant p = 3.5, with realistic meson and baryon masses.

The Paschos-Wolfenstein relation $R^{-} = \frac{\sigma_{\nu}^{NC} - \sigma_{\overline{\nu}}^{NC}}{\sigma_{\nu}^{CC} - \sigma_{\overline{\nu}}^{CC}} \simeq \frac{1}{2} - \sin^{2} \Theta_{W}$ has been measured (NuTeV) to deviate from the SM expectation by » 3 σ

$$R^{-} \simeq \frac{1}{2} - \sin^{2} \Theta_{W} - \left(\frac{1}{2} - \frac{7}{6} \sin^{2} \Theta_{W}\right) \frac{[S^{-}]}{[Q^{-}]}$$
$$[Q^{-}] \equiv \int_{0}^{1} dx \ x \ \frac{u_{v}(x) + d_{v}(x)}{2}$$
$$[S^{-}] \equiv \int_{0}^{1} dx \ x \ (s - \overline{s}) \ (x)$$

 $(s - \overline{s})(x) \neq 0$ could explain or reduce the discrepancy.

Lagrangian multiplier results for [S-]:

Future prospects for [S⁻]?

W and associated charm (jet) production: conceivable @ Tevatron, RHIC, LHC But statistics (efficiency driven) and high scale are unlikely to permit to access a small asymmetry.

Baur, Halzen, Keller, Mangano, Riesselmann

CC charm @ HERA: ditto

Lattice:

The moment $[S^-]$ itself does not correspond to a local operator. Higher, uneven moments (n=3,5,...)

$$\int_0^1 dx \ x^{n-1} \ (s-\overline{s})(x) \sim \langle N | \, \overline{\Psi} \gamma^{\mu_1} D^{\mu_2} ... D^{\mu_n} \Psi | N \rangle$$

can be related to local operators and could presumably clarify the sign of the x! 1 behaviour, though not the magnitude of [S⁻].

Semi-Inclusive DIS?

What could one learn from SIDIS?

Current fragmentation into strange hadrons: $|u\bar{s}\rangle, |\bar{u}s\rangle, |uds\rangle, |\bar{u}d\bar{s}\rangle, ...$

is challenging for all the non-strange background fragmentation channels. A good knowledge of the corresponding FFs would be required.

An asymmetry between strange and antistrange target fragmentation / fracture products might be more promising? Energy conservation:

Backup Slides

The Lagrange Multiplier Method in Global Analysis

and vary λ over an appropriate range.