Unique features of linac-ring eRHIC

Daniel Anderson¹, Ilan Ben-Zvi^{1,2,4}, Rama Calaga^{1,4}, Xiangyun Chang^{1,4}, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, <u>Vladimir Litvinenko</u>,^{1,4}, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko²

Collider-Accelerator Department ⁽¹⁾Physics Department ⁽²⁾ BNL Bates Lab, MIT ⁽³⁾, Department of Physics and Astronomy, SUNY @ Stony Brook ⁽⁴⁾

RHIC

Outline

- Layout(s), ERL →Detector without quads!
- CM energies
- Beam parameters
- Luminosity : the values and the limits
- Polarization: the gun and spin transparency
- Conclusion

Goals and Targets

- This scheme meets or exceeds the requirements for the collider specified in the physics program for eRHIC [1]:
- ✓ Electron beams colliding with beams of protons or light and heavy nuclei
- ✓ Wide range of collision energies (E_{cm}/nucleon from 15 GeV to 100 GeV)
- ✓ High luminosity $L > 10^{33}$ cm⁻² s⁻¹ per nucleon
- ✓ Polarization of electron and proton spins
- ✓ Preferably, two interaction regions with dedicated detectors.

[1] Physics performance requirements for eRHIC, A.Deshpande et al.,

CM vs. Luminosity

Modified: original is from Abhay Deshpande's talk at at EIC2004

- eRHIC
 - Variable beam energy
 - P-U ion beams
 - Light ion poalrization
 - Large luminosity

ELIC

- Variable beam energy
- Light ion polarization
- Huge luminosity

RHI	C	main case	option
	Ring circumference [m]	3834	1
	Number of bunches	360	
	Beam rep-rate [MHz]	28.15	
Protons: number of bunches		360	120
	Beam energy [GeV]	26 - 250	
	Protons per bunch (max)	$2.0 \cdot 10^{11}$	$6 \cdot 10^{11}$
	Normalized 96% emittance [µm]	14.5	
	$\beta^*[m]$	0.26	
	RMS Bunch length [m]	0.2	
	Beam-beam tune shift in eRHIC	0.005	
	Synchrotron tune, Qs	0.0028 (see [2.4]))
Gold	ions: number of bunches	360	120
	Beam energy [GeV/u]	50 - 100	
	Ions per bunch (max)	$2.0 \cdot 10^{9}$	$6\cdot 10^9$
	Normalized 96% emittance [µm]	6	
	$\beta^*[m]$	0.25	
	RMS Bunch length [m]	0.2	
	Beam-beam tune shift	0.005	
	Synchrotron tune, Qs	0.0026	
Elec	trons:		
	Beam rep-rate [MHz]	28.15	9.38
	Beam energy [GeV]	2 - 10	
	RMS normalized emittance [µm]	5- 50 for $N_e = 10^{10} / 10^{11} e^{-10}$ per bunch ~ 1m, to fit beam-size of hadron beam 0.01	
	β^*		
	RMS Bunch length [m]		
	Electrons per bunch	0.1 - $1.0 \cdot 10^{11}$	
	Charge per bunch [nC]	1.6 – 16	
	Average e-beam current [A]	0.045 - 0.45	0.015 - 0.15

Integration with IP

 $\Delta x = 12\sigma_{p,x} + 5\sigma_{e,x} + d$ septum= $12 \cdot 0.93$ mm + $5 \cdot 0.25$ mm + 10mm = 22.4mm.

- Round-beam collision geometry to maximize luminosity
- Smaller e-beam emittance resulting in 10-fold smaller aperture requirements for the electron beam*
- Possibility of moving the focusing quadrupoles for the e-beam outside the detector and the IP region, while leaving the dipoles used for separating the beam
- Possibility of further reducing the background of synchrotron radiation

* C.Montag - IP lattice for linac-ring

Detector Design --- HERA like...

© from Abhay Deshpande's talk at at EIC2004

Hadronic Calorimeter

Round 10 GeV electron beam from ERL with initial transverse RMS emittance of 3 nmrad passes through the IP with the disruption parameter 3.61 (tune shift $\xi_e = 0.6$). Poincare plots for e-beam distribution before (red) and after (blue) the IP.

After removing the r-r' correlations, the emittance growth is only 11%.

For the linac-ring collider, the beam-beam effect on the electron beam is better described not by a tune shift but by a disruption parameter, i.e. additional betatron phase advance

Does e-beam survives? YES

Matching the beam's size with the ion beam and a negative α =-1 at z=-0.3m. The e-beam's size does not shrink below the matched value and the hadron tune shift does not exceed $\xi_{\rm h} = 0.005$

Polarized electron gun and ERL spin transparency

Vladimir Litvinenko, Linac-Ring eRHIC - March 15, 2004 Jefferson Lab, EIC workshop

RHIC

Limitations and challenges

- No positron-ion collisions (in present state...)
- Need for intense R&D program on
 - High intensity, high current polarized electron source
 - -High current ERL (on-going program)

Conclusions: It is feasible - Needs R&D

- Wide range of collision energies (E_{cm}/nucleon from 15 GeV to 100+ GeV. e⁻ energy as low as 1 GeV as high as 25 GeV).
- High luminosity $\rightarrow 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ for high energy protons, $\rightarrow 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ for high energy Au ions.
- High degree of polarization (>80%) of the electrons at any energy, **no forbidden energies**.
- One, two, three ... interaction regions with dedicated detectors
- Energy of electron is simply upgradeable.
- Reduction of synchrotron radiation in detector by cooling ions.
- No quadrupoles in detector.
- Simple compensation for ion velocity.
- Possibility of γ-ion collider.

