KEKB Status and Upgrade Plan with Crab Crossing

Second Electron-Ion Collider Workshop March 16,2004

Mika Masuzawa, KEK

1

Contents

- 1. Introduction
- 2. Machine Performance
- 3. Key Issues for High Luminosity
- 4. Upgrade Plan with Crab Crossing
- 5. Summary

1. Introduction

Beam energy

- -8GeV (electron, "HER")
- 3.5GeV (positron, "LER")

Circumference

- 3016 m
- Use TRISTAN tunnel

RF system

- $-f_{RF} \sim 509 MHz$
- ARES (LER)
- ARES+SCC (HER)

The construction of KEKB began in 1994, and was completed in November 1998. Commissioning started in Dec.1998.

Machine Parameters (12/18/2003)

Ring	LER	HER	
Horizontal Emittance (nm)	18 (18)	24 (18)	
Beam Current (mA)	1503 (2600)	1132 (1100)	
Number of bunches	1281 (~5000)		
Bunch Current (mA)	1.17 (0.52)	0.884 (0.22)	
Number of Bunch Trains	1		
Horizontal Beam Size@IP(μ m) σ^*_x	103	116	
Vertical Beam Size@IP(μ m) σ^*_{y}	2.3	2.3	
Emittance Ratio $\varepsilon_y/\varepsilon_x$	5.5	3.4	
Beta function@IP $\beta_x^*(cm)/\beta_y^*(cm)$	59/0.58 (33/1)	56/0.7 (33/1)	
Beam-beam parameters ξ_x/ξ_y	0.104/0.069 (0.039/0.052)	0.071/0.053 (0.039/0.052)	
Beam lifetime at collision (minutes)	125 at 1503mA	216 at 1132 mA	
Peak luminosity (/nb/s)	11.6 (10)		

IR

- Vertical focusing by a pair of superconducting Q-magnet (QCSL/QCSR).
- Extra vertical focusing by **QC1L/R** for the electron beam.
- One beam must go off axis due to the finite crossing angle at the IP.
- To minimize the flux of SR through the IP, the incoming positron (electron) beam orbit is set on the axis of QCSL (QCSR).
- **Superconducting solenoid magnets SL/R** used for compensating the detector solenoid field.

2. Machine Performance

Best 24 hours

3. Key Issues for High Luminosity

The history of the KEKB commissioning has been a struggle with issues such as:

- A) High beam currents
 - Problems with hardware components
 - Instability
- **B)** Single beam blowup due to the electron cloud instability
 - Solenoid winding
- C) Beam-beam blowup
 - Tune survey
 - Optics corrections
 - Other tuning knobs (X-Y coupling at IP etc.)

A) Problems due to High Beam Currents

Problems with vacuum components

- HOM heating and damage
 - Bellows, gate valves
- Arcing of components due to HOMs or wall currents

 Movable masks, RF shield at injection septum
- Direct damage by beam
 - Movable masks, beam abort chamber
- Heating and vacuum leak due to SR
 - IR chambers, Helico-flex gaskets

Damaged vacuum components

Damaged RF shield fingers

Damaged movable mask

A) Problems due to High Beam Currents Instability sources

- Fast ion (electron ring)
 - Serious at high vacuum pressures
 - Can be suppressed by bunch-by-bunch FB
- Electron cloud (positron ring)
 - Can be suppressed by solenoid field
- RF cavity
 - Beam current is not limited by instabilities due to RF cavity.
 - We use -1 mode damper (with comb-filter) to suppress instability from the fundamental mode.
 - We do not need longitudinal bunch-by-bunch FB.
- Others
 - Dust trapping

B) Single beam blowup due to the electron cloud instability

H.Fukuma ECOULD2002 http://wwwslap.cern.ch/collective/ecloud02/

Electron Cloud (EC)

1999/4	Single beam blowup was observed by SR monitor.
1999/10	Electron cloud hypothesis was proposed by K.Oide.
1999/11	C-yoke permanent magnets were installed in attempt to cure the blowup problem.
2000/3	Additional C-yoke magnets were installed.
2000/5	Head-tail instability model by K.Ohmi & F.Zimmermann was proposed.
2000/9	C-yoke magnets were replaced by solenoid magnets (~2800 sections).
2000/12	Effectiveness of the solenoids in improving luminosity was confirmed.
2001/1	1950 additional solenoid magnet sections were installed.
2001/9	3450 additional solenoid magnet sections were installed.
2001/11	Peak luminosity reached 5.5 nb/s.

H.Fukuma ECOULD2002 http://wwwslap.cern.ch/collective/ecloud02/

C-yoke permanent magnets

Electron-cloud-suppression solenoids

Electron-cloud-suppression solenoids Total length of solenoid

17

LER Beam size (σ_v)

LER beam current (mA)

18

Effect of solenoids on luminosity

C) Beam-Beam Blowup

- Tune survey
 - Both simulations and surveys in real machine
 - Horizontal tunes very close to the half-integer
 - Need very fine control of tunes
- Optics correction (global correction)
 - $-\beta$ functions
 - Dispersion
 - X-Y coupling
- Collision tuning knobs
 - Waist points
 - X-Y coupling at IP
 - Dispersions at IP
 - Orbit feedback around IP

Choice of Betatron Tunes & Specific Luminosity

Simulations M.Tawada, et al.

Bunch-spacing problem

- Observations
- The specific luminosity depends on the bunch spacing.
- A longer bunch spacing gives a higher specific luminosity.
- Cause of the problem
- Not understood.

Comparison of specific luminosity/bunch with 3 and 4 bucket spacing

4. Upgrade Plan with Crab Crossing

Role of Crab Cavity

	KEKB		Super-KEKB	
Strategy	Backup scheme		Adopted as baseline	
Ring	LER	HER	LER	HER
Beam energy (GeV)	3.5	8.0	3.5	8.0
Beam current (A)	2.6	1.1	9.4	4.1
RF frequency (MHz)	508.887		508.887	
Crossing angle (mrad)	±11		±15	
βx* (m)	0.33	0.33	0.2	0.2
βx, crab (m)	20	100	100〜200	300〜400
Required kick (MV)	1.41	1.44	1.10 ∽ 0.78	1.45 ∽ 1.26

The design luminosity of 1.0 $\times 10^{34}$ cm⁻² s⁻¹ has been achieved without crab crossing.

Crab crossing scheme

Palmer for LC (1988) Oide and Yokoya for storage rings :Phys,Rev.A40,315(1989)

Recent simulations by Ohmi showed significant increase of luminosity with crab crossing.

Crossing angle

Transformation from lab. Frame to head-on frame.

$$x^* = \tan \phi z + [1 + h_x^* \sin \phi] x$$

$$p_x^* = (p_x - h \tan \phi) / \cos \phi$$

$$y^* = y + h_x^* \sin \phi x$$

$$p_y^* = p_y^* / \cos \phi$$

$$z^* = z / \cos \phi + h_z^* \sin \phi x$$

$$p_z^* = p_z - p_x \tan \phi + h \tan^2 \phi$$

$$h = p_z + 1 - \sqrt{(p_z + 1)^2 - p_x^2 - p_y^2}$$

(φ: half crossing angle) Linear part

(1)	0	0	0	$tan \phi$	0^{\prime}
0	$1/\cos\phi$	0	0	0	0
0	0	1	0	0	0
0	0	0	$1/\cos\phi$	0	0
0	0	0	0	$1/\cos\phi$	0
$\left(0 \right)$	$-\tan\phi$	0	0	0	1,

Oide and Yokoya for storage rings (1989)

Transverse kick by Crab Cavity

Crab cavity makes z dependent dispersion $\zeta_x = -\phi$ at the IP, which cancels the crossing angle effect ($\phi << 1$).

Simulation Head-on vs. crab-crossing (K.Ohmi)

Crab crossing restores the full luminosity of a head-on collision.

Simulation model

Crab-crossing simulation 0-mrad vs. 11-mrad crossing angle (K.Ohmi)

- Beam-beam limit is ~0.06 for 11 mrad half-crossing angle (both models agree well).
- 0-mrad (head-on) collision gives a higher ξ_v .
- Beam-beam limit for 0-mrad crossing depends on the model.

Parameters for 11 mrad crabbing

Specification of Crab Cavity
Transverse kick: 1.44MV(HER)/1.4MV(LER)

IP horizontal β Function $\beta_{ip} = 0.56m(HER)/0.59m(LER) = 0.33m(HER)/0.33m(LER)$

Required Optics Parameter at Cavity Position

- Δ ν x(Crab Cavity-IP) = 2n π ± $\pi/2$
- **β**crab = 200m(HER)/40m(LER) 100m(HER)/20m(LER)

 $\eta \mathbf{x} = \eta' \mathbf{x} = 0$

$$V = \frac{cEtan\varphi}{\omega_{rf}\sqrt{\beta_x^*\beta_{x,crab}}}$$

 $= \begin{array}{c} V: voltage \\ E: Beam \ energy \\ \beta_x^*: \ beta-function \ at \ the \ IP \\ \beta_x: \ cra \ beta-function \ at \ the \ crab \ cavity \\ \phi: half \ crossing \ angle \ at \ the \ IP \\ _{31} \\ (A.Morita \ MAC2004) \\ \omega_{rf}: \ the \ rf \ frequency \ of \ the \ cavity \end{array}$

Hardware for Crabbing (design)

- The TM110 mode is used to create timedependent horizontal rotational kicks to beam bunches.
- The TM110 mode is trapped within the cavity, while the other unwanted modes are extracted from the cavity module.

Crab Cavity Damping unwanted parasitic modes

- Accelerating cavities
 - Operating mode (TM010) is the lowest frequency mode.
 - Any parasitic mode (HOM) has higher frequency than the operating mode.
 - Wave guides or beam pipe with cut-off frequency higher than the operating mode can damp all HOM's. (ARES, SCC, PEP-II cavity, etc)

• Crab cavity

- Operating mode (usually TM110) is NOT the lowest frequency mode.
- Frequency of several parasitic modes can be lower than (or close to) the crabbing mode.
- Special cure is needed for the damping of parasitic modes.

(K.Akai MAC2004)

Analogy with rectangular cavity

$$f_{n,m,l} = c_{1} \sqrt{\left(\frac{n}{2a}\right)^{2} + \left(\frac{m}{2b}\right)^{2} + \left(\frac{l}{2d}\right)^{2}}$$

Rectangular (n-m-l)	Cylindrical	Beam coupling	Mode
TM1-1-0	TM010	monopole-like	Accelerating mode
TM2-1-0	TM110(H)	dipole-like	Crabbing mode
TM1-2-0	TM110(V)	dipole-like	Unwanted crabbing
TE0-1-1	TE111(H)	dipole-like	Lowest TE-like
TE1-0-1	TE111(V)	dipole-like	Lowest TE-like
TM3-1-0	-	monopole-like	
TM4-1-0	-	dipole-like	
TE0-2-1	TE211	quadrupole-like	

Squashed cell

• Extremely polarized cell

Large eccentricity where horizontal size is about twice the vertical size (a ~2b).

- ⇒Frequency of the unwanted crabbing mode increases.
- Relatively short cell length (small d)

⇒The frequencies of lowest TE-like parasitic modes increase.

Frequencies of all parasitic modes except the accelerating mode can be made higher than the crabbing mode.

Crab Cavity Design for KEKB

- Squashed cell
- Coaxial coupler is used as a beam pipe

Squashed Crab cavity for B-factories

(K. Akai et al., Proc. B-factories, SLAC-400 p.181 (1992).)

Coaxial coupler with notch filter

- Monopole mode (including the Lower Freq. Mode)
 - Couples strongly and propagates in the coaxial line as TEM wave and can be guided out.
- Crabbing mode
 - Couples as dipole-like, but does not propagate in the coaxial line, if the cut-off frequency of TE11 mode is higher than the crabbing frequency.
 - Possible asymmetry or misalignment causes monopole-like coupling, which propagates in the coaxial line as TEM. A notch filter is attached to reject the TEM-coupled crabbing mode back to the cavity.

Possible location to attach coaxial coupler

(K.Akai MAC2004)

Crab crossing experiment at KEKB

		Original cavit y
KEKB (LER)	No. of caviti es	1
β crab=40m	Grow th time (hori zontal)	36ms
V_{kick} =1.47MV	Grow th time (longitudinal)	96ms
	Total HOM power	23k W
KEKB (HER)	No. of caviti es	1
β cra b=200m	Grow th time (hori zontal)	33ms
V _{kick} =1.51MV	Grow th time (longitudinal)	415ms
	Total HOM power	6kW

The crab crossing experiment in KEKB is planned in FY 2005. The original crab cavity will be used for the experiment.

Superconducting Crab Cavity

KEK Crab Cavity R&D Group K. Hosoyama, K. Hara, A. Kabe, Y. Kojima, Y. Morita, H. Nakai A. Honma, A. Terashima, K. Nakanishi MHI

S. Matsuoka, T. Yanagisawa

K.Hosoyama (MAC 2004)

Test Result of KEKB Crab Cavity #1

K.Hosoyama (MAC 2004)

Multipacting in Crab Cavity with Coaxial Coupler

41

K.Hosoyama (MAC 2004)

Crab cavity R&D, production

Fabrication and Surface Treatment RF Performance Test with a Coaxial Coupler

• Multipacting could be overcome by RF process.

We have established these techniques!

K.Hosoyama (MAC 2004)

Crab Cavity Installation Plan

Both crab cavities will be installed in the Nikko straight section because: -There is some space for both rings. -Cryogenic system is available.

7074

9425.

0

HER

\$423.8

\$425.3

Crab Cavity

8425.8

Acc. Cavities

8425.

7074

3056.3

4817.7

0000

K.Hosoyama (MAC 2004)

\$425.3

9425-8

Crab Cavity Installation in JFY 2005 (April 2005-March 2006)

Test Plan

- Install one cavity in either the HER or the LER at the end of 2005.
- Check hardware and modify if necessary.
- Install another crab cavity in the other ring in the summer of 2006.
- Beam will be crabbed throughout the entire ring.
 ⇒What will happen? HOM, RF cavity?
 ⇒If everything is OK, luminosity doubles (?)

5. Summary

- KEKB has achieved its design luminosity of 1*10³⁴ cm⁻² s⁻¹ without crab crossing.
- Crab cavities are planned to be installed in both rings by summer 2006.
 - Hardware preparation is going well.
 - A doubling of the luminosity is hoped for.

KEKB Luminosity Projection

⁽K.Oide MAC2004)

•Some numbers related to ECE at KEKB LER

Photons emitted in a bend

$$N_{\gamma} = \frac{5}{2\sqrt{3}} \alpha \gamma \frac{l}{\rho} = 4.1 /\text{positron/bend}$$

Photons emitted in a bend / bunch

 $N_{\gamma}N_{e^+}$ =1.3 x 10¹¹

Number of photoelectrons / bunch

$$N_{\gamma}N_{e^{+}}Y_{pe^{-}} = 1.3 \text{ x } 10^{10}$$

Electric field by the bunch at the wall

$$E = \frac{eN_b}{2\pi\varepsilon_0\sigma_b}\frac{1}{a}$$

Momentum kick at the wall

$$\Delta p / c = eE \frac{\sigma_b}{c} \frac{1}{c} = 2r_e m_e N_b \frac{1}{a} = 1.8 \text{ keV/c}$$

Velocity change

$$\beta = \frac{p}{E} = \frac{p}{\sqrt{p^2 + {m_e}^2}} = 0.0037$$

Kinetic energy

$$T = E - m_e = 3.5 \text{ eV}$$

Traversal time of electron

$$\tau = \frac{2a}{\beta c} = 85 \text{ ns}$$

$$\rho = 15.9 \text{ m}, l = 0.89 \text{ m},$$

Energy = 3.5 GeV,
 $N_{e^+} = 3.1 \ 10^{10}, \sigma_b = 6 \text{ mm},$
 $a = 47 \text{ mm}$

H.Fukuma ECOULD2002 http://wwwslap.cern.ch/collective/ecloud02/ •Main source of synchrotron radiation(SR)

Main bend

Total length : 0.9m x 107 = 96m (3.2% of circumference)

Radiation power : 2.1MW at design current of 2.6A

SR emitted by bend starts to hit the vacuum duct at 0.4m apart from the exit of the bend.

Wiggler

Total length : 105m (3.5% of circumference)

Radiation power : 1.9MW

H.Fukuma ECOULD2002 http://wwwslap.cern.ch/collective/ecloud02/ Higher Current:

- ◆More rf power, cooling, injector, ...
- More HOM heating (more bunches)
- ◆Beam Instabilities
- •Electron clouds, fast ions, ...

Shorter σ_z:

- More HOM heating
- Coherent synch. rad.
- ◆Shorter lifetime, more background