Interaction Region Design

Christoph Montag, BNL

Second Electron-Ion Collider Workshop, Jefferson Lab, March 15-17, 2004

Design goals

• Beam separation

Accomodation of synchrotron radiation generated by beam separation

• Beam focusing to small spot sizes to maximize luminosity

Beam separation by a crossing angle

First hadron quadrupole (septum quad) starts 5m from the IP

Required beam separation at septum: $12\sigma_p + 20\sigma_e + d_{septum} \approx 25 \text{ mm}$

 \Rightarrow Required crossing angle to provide separation without additional dipoles:

 $\Theta \approx 5 \, \text{mrad}$

Large crossing angle reduces luminosity by factor ≈ 5 due to long hadron bunches

Crab Crossing

Required transverse deflecting voltage (according to KEKB design report):

 $V_{\perp} = \frac{cE \tan \Theta}{e\omega_{\mathsf{RF}} \sqrt{\beta^* \beta_{\mathsf{crab}}}}$

250 GeV protons (or 100 GeV gold ions) $\Theta = 5 \text{ mrad}$ $\beta_{\text{crab}} = 400 \text{ m}$ $\omega_{\text{RF}} = 2\pi \cdot 200 \text{ MHz}$

$V_{\parallel} = 30 \,\mathrm{MV}$

For comparison: RHIC RF voltage is 2 MV, KEKB crab cavity voltage is 1.44 MV

Beam separation with zero crossing angle

first proton septum quadrupole at 5 m \Rightarrow keep horizontal beam sizes at 5 m small to minimize required beam separation

- hadrons:
 - $\sigma_{x,h} \propto 1/\sqrt{eta_{x,h}^*}$
 - ightarrow lower limit on $eta^*_{x,h}$
 - \rightarrow upper limit on luminosity
- electrons:

 $\sigma_{x,e} \propto \sqrt{\epsilon_{x,e}},$

but smaller $\epsilon_{x,e}$ requires larger $\beta^*_{x,e}$ to match beam sizes

- \rightarrow larger beam-beam parameter
- \rightarrow luminosity limitation for ring-ring design

Synchrotron radiation issues

Beam separation close to the IP to bring proton low- β quads as close as possible to the IP (5m)

Generation of synchrotron radiation close to the IP

 \rightarrow this synchrotron radiation is generated inside the detector volume

 \rightarrow cannot be collimated, must be passed safely through the IP and the low- β electron quads

 \rightarrow radiation fan width must be kept small to limit required quad aperture

 \rightarrow separation as close as possible to the IP

 \rightarrow S-shape IR preferred over C-shape

S-shape IR preferred over C-shape:

$\operatorname{Low-}\beta$ focusing

Low- β focusing is limited by hourglass effect:

 $\beta > \sigma_{p,s}$

Hadron bunchlength $\sigma_{p,s}$ is limited by cryo load and IBS: $\sigma_{p,s}\approx 20\,{\rm cm}$

Hadron transverse emittance is given by present RHIC plus electron cooling

Keep beams at IP as round as possible to maximize luminosity and minimize beam-beam, but be aware of horizontal beam size at the septum

IR parameters for 10 GeV e on 250 GeV p

	ring-ring	linac-ring	luminosity ratio
ϵ_h [nm]	9.5	9.5	$\mathcal{L}_{l-r}/\mathcal{L}_{r-r}$
ϵ_e (x/y) [nm]	53/9.5	2.5/2.5	
β_h (x/y) [m]	1.08/0.27	0.27/0.27	
$eta_e~({ m x/y})~[{ m m}]$	0.19/0.27	0.99/0.99	
$\sigma^*~({ m x/y})~[\mu{ m m}]$	100/50	50/50	2
N_e /bunch [10 ¹¹]	1.0	1.4	1.4
N_p /bunch [10 ¹¹]	1.0	1.02.0	12
$egin{array}{l} \xi_h \ ({\sf X}/{\sf y}) \ \xi_e \ ({\sf X}/{\sf y}) \end{array}$	0.007/0.0035 0.022/0.08	0.007/0.007	
${\cal L}~[10^{33}{ m cm^{-2}sec^{-1}}]$	0.44	1.252.5	2.8 5.6

Ring-ring IR lattice

Hadrons:

Electrons:

Linac-ring IR lattice

Hadrons:

Electrons:

Conclusion

- Design considerations and limitations for (eRHIC) electron-ion IR have been presented.
- IR design solutions for both ring-ring and linac-ring option of eRHIC exist.
- Linac-ring option provides at least 2.8 times more luminosity for 10 GeV e on 250 GeV p.

Thanks to:

Joanne Beebe-Wang, Ilan Ben-Zvi, Abhay Deshpande, Jorg Kewisch, Brett Parker, Vadim Ptitsyn, Bernd Surrow, Steve Tepikian