

03/16/2004

Jefferson Lab 🤊

Polarized Photoproduction at an $\vec{e}\vec{p}$ Collider

Marco Stratmann

University of Regensburg

- QCD Framework for ep Photoproduction Processes
- Accessing the Parton Densities of Polarized Photons
- Summary: Physics Goals and Machine/Detector Requirements

Photoproduction (I): *direct* vs. *resolved* photons

example: high- p_T single-inclusive hadron production $\vec{e}\vec{p} \to HX$ at $Q^2 \simeq 0$ sum of *two* contributions at $\mathcal{O}(\alpha \alpha_s)$ [LO]

Photoproduction (II): perturbative QCD approach

high- p_T processes \rightarrow standard factorized "picture" for $d\Delta\sigma_{\rm dir/res}$

Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.; . . .

Photoproduction (III): photon flux

consequences/complications:

- \cdot energy of "target" photon not fixed but smeared
- · "electron pdf's" more appropriate: $\Delta f^a_{\gamma} \to \Delta f^a_e(x_a) = \int_{x_a}^1 \frac{dy}{y} \Delta P_{\gamma e}(y) \Delta f^a_{\gamma} \left(x_{\gamma} = \frac{x_a}{y} \right)$
- · strong dilution of polarization for $y \rightarrow 0$

Photonic Parton Densities (I): evolution

LO: Irving, Newland; Hassan, Pilling; Xu μ^2 -evolution of Δf_{γ} : known up to NLO NLO: Vogelsang, MS $\frac{\mathrm{d}\Delta f_{\gamma}^{i}}{\mathrm{d}\ln\mu^{2}} = \Delta k_{i} + \left(\Delta P_{i}\otimes\Delta f_{\gamma}^{i}\right)$ $\uparrow \qquad \uparrow$ i=(NS,S)inhom. part homogeneous $\gamma
ightarrow i$ "hadron"-like splitting contribution $\Delta f^i_{\gamma} = \Delta f^i_{\gamma, \mathrm{pl}} + \Delta f^i_{\gamma, \mathrm{hadr}}$ well-known solution: [of $\mathcal{O}(\frac{\alpha}{\alpha s})$ in LO] \nearrow pointlike part: hadronic part: · depends only on μ_0 · requires *non*-pert. input $\Delta f^i_{\gamma, \mathbf{pl}}(\mu_0^2) = 0$ \cdot large x behavior \cdot dominates at small-to-medium x

Photonic Parton Densities (II): models

no experimental information \rightarrow have to fully rely on models

idea: use two extreme models to study physics potential of future facilities

Glück, Vogelsang; Glück, Vogelsang, MS

models sufficient to study *upper/lower bounds* for spin asymmetries

Accessing Δf_{γ} at eRHIC (I): strategy

 Δf^{γ} accessible from *resolved* part of photoproduction cross section general problem: separating off "unwanted" direct- γ contribution most promising processes: all successfully used by H1 and ZEUS to extract f^{γ} !!

• single-inclusive reactions

only indirect direct/resolved "separation" via $(\Delta)\sigma_{dir}$ dominant $\eta_{lab} < 0$ ($\leftrightarrow x_{\gamma} \rightarrow 1$) $(\Delta)\sigma_{res}$ for $\eta_{lab} > 0$ ($\leftrightarrow x_{\gamma} \ll 1$) [positive η : proton direction]

• di-jet/hadron production

reconstruction of x_γ possible in experiment

ightarrow define direct and resolved samples via x_{γ} -cut old idea: Forshaw, Roberts

Accessing Δf_{γ} at eRHIC (II): status of pQCD calculations

NLO QCD results mandatory for meaningful quantitative comparison with experiment

• much reduced μ -dep. (th. error) • more realistic final state • LO fails at HERA

currently available NLO results:

we still have a couple of years ...

jets	$\vec{\gamma}\vec{p} \rightarrow \text{jet} + X$	direct	\checkmark	De Florian, Frixone; Jäger et al.
		resolved	\checkmark	De Florian et al.; Jäger et al.
	$\vec{\gamma}\vec{p} ightarrow \mathrm{jet}_1 + \mathrm{jet}_2 + X$	direct	\checkmark	De Florian, Frixone
		resolved	\checkmark	De Florian, Frixone, Signer, Vogelsang
hadrons	$\vec{\gamma}\vec{p} ightarrow H + X$	direct	\checkmark	De Florian, Vogelsang; Jäger et al.
		resolved	\checkmark	De Florian; Jäger, MS, Vogelsang
	$ec{\gamma}ec{p} ightarrow H_1 + H_2 + X$	direct	×	
		resolved	×	work in progress
heavy quarks	$\vec{\gamma}\vec{p} ightarrow Q\bar{Q}X$	direct	\checkmark	Bojak, MS; Contogouris et al.
		resolved	\checkmark	Bojak, MS

Accessing Δf_{γ} at eRHIC (III): lessons from HERA

a lot of experience from HERA measurements: e.g. 1-jet from

... lessons from HERA (cont.)

e.g. 2-jet measurement from

ZEUS dơ/dE^{jet1} (pb/GeV) • ZEUS 96-97 x^{obs} > 0.75 10 ⁵ NLO (GRV) & HAD NLO (AFG) & HAD Jet energy scale uncertainty 10 1 < n^{jet1,2}< 2.4 (x 20000) 10 $\begin{array}{l} \textbf{1} < \eta^{jet1} {\textbf{< 2.4}} \\ \textbf{0} < \eta^{jet2} {\textbf{< 1}} \end{array}$ (x 20) (x 100) 10 $\bm{0}<\eta^{j\text{et1,2}}\!\!<\bm{1}$ -3 10 (x 0.01) $\bm{0}<\eta^{j\text{et1}}\!\!<\bm{1}$ -1 < η^{jet2}< 0 (x 0.0005) < η^{jet1,2}< 0 (x 0.00001) -5 10 70 20 30 40 50 60 E^{jet1} (GeV)

Expectations for eRHIC (I): single-inclusive hadrons

Jäger, MS, Vogelsang

- much improved scale dependence
- expected sensitivity to Δf_γ at large $\eta_{
 m lab}$

Expectations for eRHIC (II): single-inclusive jets

MS, Vogelsang

 $\leftarrow \text{ LO estimate only} \\ \text{[no NLO studies at } S^{1/2}_{ep} = 100 \, \text{GeV} \text{]} \\$

parameters used:

$$S_{ep}^{1/2} = 100 \,\mathrm{GeV}; \ p_T^{\min} = 5 \,\mathrm{GeV}$$
 $0.2 \le y \le 0.85; \ Q_{\max} = 1 \,\mathrm{GeV}$ $\mathcal{P}_{e,p} = 0.7; \ \mathcal{L} = 500/\mathrm{pb}$

main results:

- \cdot expected sensitivity to Δf_{γ} at large $\eta_{\rm lab}$
- \cdot $\eta_{
 m lab} < 0$ to double-check on Δg

Expectations for eRHIC (III): di-jets

MS, Vogelsang

 $\leftarrow \text{ LO estimate only} \\ \text{[no NLO studies at } S^{1/2}_{ep} = 100 \, \text{GeV} \text{]} \\$

parameters used:

 $S_{ep}^{1/2} = 100 \,\mathrm{GeV}$ $|\eta_1 - \eta_2| \le 1; \ 0 \le rac{\eta_1 + \eta_2}{2} \le 2$ $0.2 \le y \le 0.85; \ Q_{\mathrm{max}} = 1 \,\mathrm{GeV}$ $\mathcal{P}_{e,p} = 0.7; \ \mathcal{L} = 500/\mathrm{pb}$

main feature:

- x_{γ} -cut \rightarrow sensitivity to Δf_{γ}
- \cdot eff. pdf approx. works reasonably well

... di-jets (cont.)

extraction of Δf_{γ} from spin asymmetries: non-trivial unfolding

 \rightarrow try *"effective pdf approach"* as 0^{th} approximation:

idea: $qq'/qg \simeq qg/gg \simeq C_F/C_A = 4/9$ Combridge, Maxwell $\rightarrow d\sigma_{\rm res} \simeq f_p^{\rm eff} \otimes f_{\gamma}^{\rm eff} \otimes d\hat{\sigma}_{qq' \rightarrow qq'}, f^{\rm eff} \equiv \sum_q (q+\bar{q}) + \frac{9}{4}g$ pol. case: $qq'/qg \neq qg/gg$ Vogelsang, MS however, $\Delta f^{\rm eff} \equiv \sum_q (\Delta q + \Delta \bar{q}) + \frac{11}{4}\Delta g$ works

Summary (I): physics goals

prime goal: 1st determination of Δf_{γ}

- unique physics case for an $\vec{e}\vec{p}$ collider
- important test of pQCD
- almost all tools available in NLO

making use of the "background": extract Δf_p

- direct part sensitive to Δg
- important test of universality of pol. pdfs after RHIC
- high statistics → may reduce errors on pdfs
- $\sqrt{S_{ep}} = 100 \,\text{GeV}$ new territory also for unpol. ep collisions

Summary (II): machine/detector requirements

photoproduction physics certainly doable

- H1 and ZEUS are teaching us how to do it
- moderate luminosities required: $500 \div 1000 \text{ pb}^{-1}$
- need to tag/anti-tag scattered electron to define photoproduction $(Q^2\simeq 0)$
- H1/ZEUS-like detector to measure jets and different hadrons with good p_T and η coverage and resolution