

a RHIC Perspective

J. Wei, W. Fischer

Collider-Accelerator Department

EIC Workshop, JLab, March 16, 2004

Outline

- IBS phenomena in RHIC
- A view from the beam rest frame
- IBS scaling behavior
 - Below transition
 - Above transition (negative-mass regime)
- Comparison on growth rates
- Fokker-Planck equation on density distribution evolution
- Counter measures: beam cooling

Intra-beam phenomena in RHIC

- IBS: intra-beam small-angle Coulomb scattering
 - → primary luminosity limiting factor in an heavy-ion storage ring Rutherford scattering cross section ~ Z^4 / A^2

Impact at both collision & injection

• Collision:

- Design store time 10 hours
- Expected longitudinal beam loss escaping RF bucket ~ 40%
- Expected transverse emittance growth ~ 3 times
- Injection:
 - Design filling time ~ 2 minutes; much faster IBS growth

Debunching during store

Au⁷⁹⁺ stores, $\beta^*=5m$, $N_b=0.25...0.4 \cdot 10^9$ /bunch, storage rf system

20% of beam debunched after 5 hours

Bunched beam lifetime

A view from the beam rest frame

- Observe particle motion in the rest frame of the beam
- Transformed Hamiltonian

$$\begin{split} H\Big(x_{\beta}, P_{x}, y_{\beta}, P_{y}, z, P_{z}, \tau\Big) &= \frac{P_{x}^{2}}{2} + \frac{K_{x}(\tau)x_{\beta}^{2}}{2} + \frac{P_{y}^{2}}{2} + \frac{K_{y}(\tau)y_{\beta}^{2}}{2} + \frac{1 - \gamma^{2}F_{z}(\tau)}{2}P_{z}^{2} + V_{C}(x, y, z) \\ F_{z} &= \begin{cases} D + DD'' + D'^{2} & (bends) \\ DD'' + D'^{2} & (straights) \end{cases} \quad \langle F_{z} \rangle = \frac{1}{\gamma_{t}^{2}} \end{split}$$

• Coulomb potential (now non-relativistic)

$$V_{C} = \sum_{j} \frac{1}{\sqrt{(x_{j} - x)^{2} + (y_{j} - y)^{2} + (z_{j} - z)^{2}}}$$

• Time-dependent Hamiltonian in beam rest frame

Below transition: positive-mass regime

- In the ideal case of uniform focusing, the Hamiltonian is positive definite
 - There exists an equilibrium state
 - In the equilibrium state, the beam has equal temperature in all three directions (isotropic in the velocity space)

$$\left\langle \frac{\sigma_x}{\beta_x} \right\rangle \approx \left\langle \frac{\sigma_y}{\beta_y} \right\rangle \approx \frac{\sigma_p}{\gamma}$$

- In general, the Hamiltonian is time-dependent; system is not conserved (AG focusing)
- <u>Quasi-equilibrium state</u>: approaching equilibrium yet still allows growth in beam size

Above transition: negative-mass regime

- The Hamiltonian is NOT positive definite in any case
 - There exists NO equilibrium state
 - All beam dimension can grow
 - Asymptotic relation exists between different dimension

$$\sigma_x^2 \approx D_p^2 \sigma_p^2$$

• Typically vertical dimension grows only through transverse coupling

Beam growth scaling law

• IBS beam size growth rates

$$\begin{bmatrix} \frac{1}{\sigma_p} \frac{d\sigma_p}{dt} \\ \frac{1}{\sigma_x} \frac{d\sigma_x}{dt} \\ \frac{1}{\sigma_y} \frac{d\sigma_y}{dt} \end{bmatrix} = \frac{Z^4 N}{A^2} \frac{r_0^2 m_0 c^2 L_c}{8 \gamma \epsilon_x \epsilon_y S} F(\chi) \begin{bmatrix} n_b (1-d^2) \\ -a^2/2 + d^2 \\ -b^2/2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_y} \frac{d\sigma_y}{dt} \\ \frac{1}{\sigma_y} \frac{d\sigma_y}{dt} \end{bmatrix}$$

- Proportional to $Z^4/_{A^2}$
- Proportional to 6-D phase-space density
- Analytic expression obtained for regular (e.g. FODO) lattice; derived by assuming a Gaussian distribution

(A. Piwinski, J. Bjorken, S. Mtingwa, G. Parzen ...)

Y

Longitudinal profile measurements

Geometric phase [degrees]

Wall Current Monitor

time resolution 0.25 ns
(buckets: 35 ns and 5 ns)

- recording period 0.1...5 min
- used for:
 - bunched current
 - bunch length (Gaussian fit)

Transverse emittance measurements

Ionization Profile Monitor

R. Connolly, S. Tepikian

- recording period 0.5...5 min
 data of improved reliability
 - multi-channel plates
 - recessed to avoid stray electrons
 - small rest gas ionization with protons
- used:
 - at injection
 - calibration at store

Fokker-Planck approach on density evolution

Fokker-Planck equation

- Drift and diffusion mechanisms
 - Collision: dominated by diffusion process
 - Injection: contributed by both drift and diffusion process

$$rac{\partial \Psi}{\partial t} = -rac{\partial}{\partial J} \left(F\Psi
ight) + rac{1}{2} rac{\partial}{\partial J} \left(Drac{\partial \Psi}{\partial J}
ight), ~~ {
m with} ~~ \left\{ egin{array}{cc} J=0:&-F\Psi+rac{D}{2} rac{\partial \Psi}{\partial J}=0\ ,\ J=J_{max}:&\Psi=0\ , \end{array}
ight.$$

where the drift coefficient is given by

$$F(J) = \oint \frac{2dz}{\pi R} \int_0^{\frac{1}{4}} dQ \frac{\partial W}{\partial J} \Big|_{\phi}^{-1} (Q, J) \int_{J_{\min}}^J \frac{\partial W}{\partial J} \Big|_{\phi} (Q', J') \left[A_F(\lambda_1) + A_F(\lambda_2)\right] \Psi(J') dJ'$$

and the difusion coefficient is given by

$$D(J) = \oint rac{2dz}{\pi R} \int_0^{rac{1}{4}} dQ \left[rac{\partial W}{\partial J} \Big|_{\phi}^{-1} (Q,J)
ight]^2 \int_{J_{min}}^{f} rac{\partial W}{\partial J} \Big|_{\phi} (Q',J') \left[A_D(\lambda_1) + A_D(\lambda_2)
ight] \Psi(J') dJ'$$

Counter-measure example: stochastic cooling

Figure 3: Improvements on a) instantaneous and b) integrated luminosity in RHIC when stochastic cooling is applied.

Key for bunched-beam stochastic cooling in a collider:

→ eliminate coherent spikes at GHz range that may saturate the cooling system

IBS among gold ions in RHIC may diffuse possible soliton mechanism

(M. Brennan, M. Blaskiewicz, et al ...)

Summary

- Intra-beam scattering is the leading mechanism that limits beam luminosity in RHIC
- At storage, theoretical estimates qualitatively agrees with experimental measurements
- Counter-measures like stochastic cooling and electron cooling are under development

References

- J. Wei and M. Harrison, The RHIC Project Design, Status, Chattenges, and Perspectives, Proc. XVI RCNP Osaka International Symposium on Multi-GeV High-Performance Accelerators and Related Technology, Osaka, Japan (March 1997).
- [2] S. Peggs, M. Harrison, F. Pilat, M. Syphers, Flat Beams in a 50 TeV Hadron Collider, Proc. 1997 Particle Accelerator Conference, Vancouver, p. 95 (1997).
- [3] J. Wei, Evolution of Hadron Beams under Intrabeam Scattering, Proc. 1993 Particle Accelerator Conference, Washington, D.C. (May 1993) p.3653.
- [4] A. Piwinski, Intra-Beam-Scattering, CERN 92-01, Proc. CERN Accelerator School, Gifsur-Yvette, Paris, 1984, p405.
- [5] M. Martini, Intrabeam Scattering in the Acol-AA Machines, CERN PS/84-9 (AA) (1984).
- [6] G. Parzen, Intrabeam Scattering at High Energies, Nucl. Instr. Meth. A256, 231 (1987); G. Parzen, Proc. 1988 European Particle Accelerator Conference, Rome, p.821.
- [7] J. Wei and A.G. Roggiero, Beam Life-Time with Intrabeam Scattering and Stochastic Cooling, Proc. 1991 Particle Accelerator Conference, San Francisco, p. 1869.
- [8] J. Bjorken and S. Mtingwa, Intrabeam Scattering, Particle Accelerators 13, 115 (1983).
- [9] J. Wei, Intensity Dependent Effects in RHIC, Proc. Workshop on Instabilities of High Intensity Hadron Beams in Rings, AIP 496, ed. T. Roser and S.Y. Zhang, (1999) p. 197.
- [10] This list of parameters is used during the Mini-Workshop on the Effects of Synchrotron Radiation in VLHC, Brookhaven National Laboratory, September 2000 (web site http://www.vlhc.org).

