Novel, Hybrid RF Injector as a High-average-current Electron Source

Dinh Nguyen
Los Alamos National Laboratory

Lloyd Young
TechSource

Energy Recovery Linac Workshop
Thomas Jefferson National Accelerator Facility
March 19-23, 2005
Outline

- Normal- Conducting RF Gun Problems
- Superconducting RF Gun Problems
- Hybrid RF Photoinjector
 - Normal-conducting 1½-cell + SRF cells
 - How might it solve the above problems?
- Preliminary Cavity Design
- Preliminary PARMELA Simulation Results
- Summary
Normal-Conducting RF Gun Problems

- Ohmic loss scales with \((\text{gradient})^2\). Using a high gradient multi-cell cavity leads to large ohmic losses and requires careful thermal management.

- Thermal distortion in a multi-cell cavity leads to cavity detuning and loss of RF field flatness.

- High Q.E. photocathodes are poisoned by contaminations desorbed from the heated cavity walls.
Superconducting RF Gun Problems

- Magnetic field for emittance compensation near the cathode is incompatible with SRF cavities.

- Operating a semiconductor cathode at low temperature in an SRF cavity leads to low Q.E.

- Debris released from semiconductor cathodes could quench the SRF cavities.
Hybrid, NC-SRF Gun Concept

- Independently Power Niobium Full-cells (3x)
- Thermal Standoff
- Magnetic Shield
- Copper 1.5-cell Cavity
- Non-resonant Vacuum cell
- Solenoid Magnet
How the hybrid gun may solve the NC or SRF gun problems

- Solutions to NC gun problems
 - Cryo-pumping reduces cathode contamination
 - Ohmic loss is reduced with only 1.5-cell NC injector

- Solutions to SRF gun problems
 - NC gun can admit solenoid field for emittance compensation at high bunch charge
 - NC cathode is isolated from SRF cavities
 - Allows semiconductor cathode to operate at RT
 - Protect SRF cavities
Basic Injector Design Physics

- **Gradients**
 - Image charge field
 \[E_z(0, \phi_{inj}) \geq 2E_{IC} \]
 - Invariant Envelope
 \[\sigma_i = \left(\frac{2}{\gamma'}\right)\sqrt{\frac{I}{3I_0\gamma'}} \]
 - Space-charge emittance growth in drift
 \[\varepsilon_{SC} = \left(\frac{I}{I_0}\right)\frac{G(\gamma/\beta)}{(\beta\gamma')^2}D \]

- **Keep the thermal standoff relatively short to reduce emittance growth in drift**

\[E_z(z, t) = E_0 \cos(kz) \sin(\omega t) \]

- \(q \) = Bunch charge
- \(A \) = Emission area
- \(E_z \) = Cathode cell gradient
- \(E_{IC} \) = Image charge field
- \(\sigma_i \) = input rms radius
- \(\gamma \) = beam’s gamma
- \(\gamma' \) = gradient (d\gamma/dz)
- \(I \) = peak current
- \(I_0 \) = Alvén current
- \(G(L/a) \) = geometric factor
 - 0.05 (parabolic)
- \(D \) = drift distance
Example Parameter Set

- Frequency: \(f \) = 700 MHz
- Bunch charge: \(q \) = 1 nC
- Beam energy: \(E_k \) = 5 MeV
- Emission area: \(A \) = 1.13 cm\(^2\)
- Image charge field: \(E_{IC} \) = 1 MV/m
- Injection phase: \(\phi_{inj} \) = 15°
- Cathode cell gradient: \(E_C \) = 5 MV/m
- Drift distance: \(D \) = 0.7 m
- SRF cell gradient: \(E_{SRF} \) = 10 MV/m
- Invariant rms radius: \(\sigma_i \) = 2.6 mm
Minimizing Emittance

- Thermal emittance $\varepsilon_{n,T}$ scales with radius
- Space charge emittance $\varepsilon_{n,SC}$ scales with radius$^{-1}$
- RF-induced emittance $\varepsilon_{n,RF}$ scales with radius2
- Total emittance ε_n

Thermal emittance

$$\varepsilon_{n,T} = \sigma_r \sqrt{\frac{kT}{mc^2}}$$

Space-charge emittance

$$\varepsilon_{n,SC} = \frac{I}{\gamma I_A \left(\frac{3\sigma_r}{\sigma_z} + 5 \right)}$$

RF induced emittance

$$\varepsilon_{n,RF} = \gamma k_{RF}^2 \sigma_r^2 \sigma_z^2$$

Total emittance

$$\varepsilon_n = \sqrt{\varepsilon_{n,SC}^2 + \varepsilon_{n,RF}^2 + \varepsilon_{n,T}^2}$$
Preliminary Design of 1.5-cell Normal-conducting Injector

- Cathode cell
- Full cell with RF feeds
- Cathode stem
- Non-resonant pumping cell

Resonant frequency = 700.176 MHz at 20 deg. C. Hole radius = 6.5 cm. F = 700.60159 MHz
RF Loss in RT Cu 1.5-cell Gun

Ohmic loss (kW)

Gradient (MV/m)

Total RF consumption = Ohmic loss + Beam power
At 5 MV/m and 100 mA 139 kW 100 kW
At 5 MV/m and 1 A 139 kW 1 MW
The calculated power density at 7 MV/m is $\sim 100\ W/cm^2$.

![Graph showing fields and power on segments 1 through 44 for 7MV/m in cathode cell]
On-axis Magnetic Fields for Emittance Compensation

A magnetic shield is used to reduce stray magnetic field in SRF region
All solenoids have to be off when SRF cavities are being cooled down
A similar 2.5-cell NC injector is in fabrication at AES with 9/05 delivery.
Preliminary Design of SRF Cavity

High-Power Coax Coupler

Asymmetric SRF Cavity

Gradient = 10 MV/m
Hybrid injector at 5 MV/m NC and 10 MV/m SRF yields >5 MeV
PARMELA Simulations

Phase-space Plots at $z = 43.5$ cm
PARMELA Simulations
Phase-space Plots at $z = 423$ cm
PARMELA simulation for 1 nC shows rms emittance <3 microns
Summary

- A novel hybrid injector with 1½-cell normal-conducting gun and 3 independently powered superconducting RF cells is presented.
- The hybrid injector admits an external magnetic field near the cathode for emittance compensation.
- PARMELA simulations show the feasibility of achieving 5 MeV energy from 1½-cell NC at 5 MV/m and 3 SRF cells at 10 MV/m.
- Preliminary simulations show emittance from the hybrid injector is less than 3 microns for 1 nC.