JLab 10kW FEL Driver Beam Diagnostics

Outline

. Philosophy
. Beam Viewers
. Beam Position Monitors
. Synchrotron Light Monitors
. Beam Loss Monitors
. Bunch Length Monitors
 . Streak camera measurements
 . “Happek” Interferometer
 . M55 Bunch length & curvature
 . THz Spectrometer
. Emittance Measurements
 . Quad Scan Technique
 . Multislit monitor
. WesCam Frame Grabber System
. Analog Monitoring System and Video Distribution
. Conclusions
Philosophy

- Leave the bunch long (especially out of injector) – then compress at wiggler
 - Recompress during energy recovery
- Limit shunt impedance of beam line components
 - Shield all devices – viewers, bellows…
- Minimize radiation
 - HUGE apertures; 15% energy acceptance
 - Use as thin as possible Al foil for OTR viewers
- Maximize use of non-invasive diagnostics
 - Install synchrotron light ports wherever possible
- Beam Loss Monitors are crucial for machine setup
- Monitor RF gradient & phases (GASK/PASK) through linac to setup path length
- Analog Monitoring System (AMS) and Video System allow operator instant access to RF phases and gradients, BLM analog outputs, and a host of other signals throughout the accelerator (put a camera on it & patch it back)
10 kW IR FEL Driver Accelerator

- Recirculator Machine is 433 nsec or 129.81 meters long
- Large magnets designed for operations to 210 MeV
- Max energy to date is 165 MeV
- Max current to date is 9.1 milliamp CW
- Max recirculated electron beam power 1.6 MW
Beam Viewers

- Variety of flag materials & coatings
 - Cromox ceramic in the 350KeV region – subject to blooming
 - “DESY” style phosphor coated Al in the 10 MeV regions – both the injection line & ER dump – extremely linear!
 - 2 insertable neutral density filters (OD1 & OD2) available for attenuation 10 to 1000
 - Thin Al flags elsewhere, 1 to 10 microns thick
 - Forward and backward OTR used
 - Two locations Silicon wafers for mirror finish
- Cohu series 1100 CCD cameras used, 0.05 Lux sensitivity
 - Bare board cameras mounted in home built enclosure, $100 CCD elements are replaced 3 months to 2 years when radiation damaged
- Red LEDs are used for illumination, **band pass filters used to limit OTR flux** (562nm;10 & 80 nm width) without attenuating the fiducial visualization.
 - The problem is that the OTR is too bright & ghost pulses contaminate spot size measurements
- Linux based Frame grabber, Scion model LG3-64
Examples of Viewer Flags

1.5 micron Al foil
1 mm reference marks

Cromox ceramic
1” dia. Used @ 350keV

‘DESY’ Phosphor coating

Si wafer fixed for spectrometer

5 micron Al 2” dia. ± 5, 10mm reference
Beam Position Monitors

- System requires low dynamic range since machine operates between 60 & 135 pC of charge per bunch
 - As micropulse frequency changes from 4MHz to 75 MHz current is; 0.3mA < I < 10mA
- Resolution requirement is ± 150 microns in linac, and 50 microns in the wiggler
- Hand-me-down electronics from CEBAF still in use, new electronics under development
- Shorted stripline BPMs used in areas with round beam tubes
 - Each electrode subtends 70 degrees
 - Injector before cryounit has 1.5” diameter (Qty. 1)
 - 10 MeV injector, after cryounit, has 2” diameter (Qty. 3)
 - Linac & back leg has 3” diameter (Qty. 26)
- Buttons used in rectangular chambers
 - Arrays of 4 and 8 buttons used in wide chambers
 - Only 4 of 8 readout with existing electronics
Multi-pass BPMs in the FEL LINAC (under development)

PULSE LEGEND

Pulse \(<A>\) is the 1\(^{st}\) injected pulse into the machine at 1.16 MHz
Pulse \(\) is the 2\(^{nd}\) injected pulse into the machine at 1.16 MHz
Pulse \(\) occurs \(855.04\) ns AFTER pulse \(<A>\)
Pulse \(<A'>\) is pulse \(<A>\) re-injected after \(433.2\) ns recirculation path delay
Pulse \(<B'>\) is pulse \(\) re-injected after \(433.2\) ns recirculation path delay

Long term goal is to separate pulses at higher Micropulse Repetition Rate Frequencies.

Micropulse Repetition Rate Frequency

\((9.425\) MHz)
1.16 MHz Multi-pass Solution
Synchrotron Light Monitors

- SLM ports are installed even in unlikely locations
- Large dipoles were built with telescopes to bring out light
- THz chicane has a mirror in vacuum to *peek* into magnet
- All locations have insertable neutral density (ND) filters to attenuate signal, SLM bright even at 88MeV pulsed beam
 - OD1 (10x) and OD2 (100x) filters extend dynamic range of cameras 3 orders of magnitude
SLM port on THz De-buncher

Lasing at 2.8 microns, white spot is SL and yellow/green is the 5th harmonic
Beam Loss Monitors

- Crucial to setting up machine and
- 931B PMTs used with programmable HVPS
- All 48 analog signal available through the AMS
- Trip levels are set to 1 micro amp CW loss

48 channels shown, 4 x 12 channel VME BLM boards shown with AMS and FSD connections on front and tube and high voltage on rear, also shown are the connections to the MPS system

Left is a typical beam viewer with BLM mounted in background, note air core correctors mounted on top of BPMs
Bunch Length Measurement by Streak Camera

• We have established a bunch characterization system with a femtosecond Streak Camera (Shukui Zhang)

• Bunch length and timing jitter were observed at 2F06 region before ARC1 magnet

• More OTS will be available for further beam characterization (Tomography…)

Bunch length measurements for e-beam energy 88Mev/CW 9MHz
‘Happek’ Bunch Length Monitor Installation

- Happek used to set injector phase, then bunch is optimized using FEL
- OTR signal from beam viewer
- Movable mirror to direct signal to interferometer or CCD camera
- Broad band lens (Shiny Bald Guy) used to collimate the THz signal to Golay cell detector in Martin-Puplett interferometer

<table>
<thead>
<tr>
<th>Step Size (micron)</th>
<th>Number of Points</th>
<th>Number of Samples</th>
<th>Pre-Trig Delay (s)</th>
<th>Current Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>1,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,000e-03</td>
<td></td>
<td>1,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1000.00</td>
<td></td>
<td>1,000.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interferometer shown with cover removed
Phase Transfer Measurements
• Drive laser phase is varied and the arrival time is measured at cavities at various points in the accelerator
 ref. G. Krafft WG4 talk
Emittance Measurements

- New slit system has been designed with independent horizontal and vertical slits for ease of alignment
 - Slit width is 127 microns, cut by wire EDM
 - This system will be recommissioned over the next weeks
- An automated quad scan technique being developed by Noboyuki Nishimori (below)
Beam Profile Measurements with WesCam Frame Grabber

Uses

- Injector phasing
- Beam spot sizes for Emittance Measurements
- Recirculator setup based on beam size and position
- Determining the energy distribution of the bunch
- Determining the energy spread

Next step, automate Linac phasing using beam positioning
Organization of WesCam System

Specifications

- Scion Corp LG3-64 PCI capture card
 - 640x480 Resolution
 - 64 Mb Frame buffer
 - Stores 128 Frames
 - External triggering
- Cohu 1100 Series camera
- Linux Workstation

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy
Analog Monitoring and Video Distribution

- 256 X 32 full cross point switch capability for both AMS and Video
- AMS output drives Tek scopes with video output that is routed to the Video system
- Video system has 32 outputs that drive ~ 100 monitors including streaming 8 channels to the Web
- The only difference between the systems is a gain of 5 pre/post amplifier; ±2volts for video, ±10 volts for AMS

System INPUT and OUTPUT signal are shown overlaid, 2V P-P, left 1 MHz, right 10 MHz

32 X 32 Cross point chassis Front view of 256 X 32 Configuration Rear view showing cables
Conclusions (What’s not done yet or not right!)

- Better injector diagnostics are needed for understanding source of drifting injector phases
- More work to understand halo from gun/light box/cryo-unit
- Multi-pass linac BPM electronics need to be completed
- A longitudinal diagnostic would be helpful for injector characterization
- THz spectrometer makes a good non-intercepting bunch length monitor
- Full integrated Machine Protection System with defined Beam & Machine Modes has made commissioning less painful
- The AMS & Video System was essential for commissioning and daily operation FEL