Quark Propagation and Fundamental Processes in QCD

- Hadronization
- Quark-gluon dynamics
- Model approaches
- Connections to HERMES, LHC/RHIC, and Fermilab
- JLab experiments present and future

Quark Propagation and Fundamental Processes in QCD

Hadronization

- The transformation of energetic quark in color field into hadron(s)
- Time dependence of restoration of hadron's local color field

Quark-gluon dynamics

- Partonic energy loss via gluon emission
- Quark-gluon correlations

Fascination with Hadronization

 Hadronization is at the heart of the most fascinating feature of QCD: confinement

Fascination with Hadronization

venergy transferred by the electron (initial energy of struck quark) Q^2 four-momentum transferred by the electron (initial size of struck quark) z_h = E_{hadron}/v , fraction of struck quark energy carried by hadron; $0 < z_h < 1$ p_T quark/hadron momentum transverse to virtual photon direction; resultsfrom initial quark transverse momentum, multiple scattering in-medium,intrinsic gluon emission, other hadronization dynamics

Target Frame DIS Kinematics

FIG. 1. DIS in the infinite-momentum frame.

See "*Space-time structure of deep-inelastic lepton-hadron scattering*," Del Duca, Brodsky, Hoyer PRD 46 (1992) p. 931

FIG. 2. Time-ordered contributions to DIS in the target rest frame.

Nuclear Deep Inelastic Scattering

- We can learn about hadronization distance scales and reaction mechanisms from nuclear DIS
- Nucleus acts as a spatial filter for outgoing hadronization products

Initial focus on properties of leading hadron; correlations with subleading and soft protons is also interesting

$$R_{M}^{h}(z, v) = \frac{\left\{\frac{N_{h}(z, v)}{N_{e}^{DIS}(v)}\right\}_{A}}{\left[N_{h}(z, v)\right]}$$
Observables
Hadronic multiplicity ratio
$$R_{M}^{h}(z, v, p_{T}^{2}, Q^{2}, \phi) = \frac{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{D}}$$

Energy loss is proportional to the *gluon density* of the medium

Recent Model Approaches: Semi-Inclusive DIS on Nuclei

The essential reaction mechanism has not been isolated: Hadron forms *inside* nucleus or *outside*? or *both*?

Gluon bremsstrahlung (Kopeliovich)

- Gluon radiation of colored quark
- Formation of color singlet pre-hadron
- Color transparency modulates prehadron (color dipole) attenuation
- Hadron attenuates in medium

Twist-4 pQCD model (Wang)

- Medium-induced gluon radiation modifies fragmentation function
- No hadronization
- Non-abelian LPM effect predicted
- Can extrapolate to predict jet quenching in RHI collisions

Recent Model Approaches: Semi-Inclusive DIS on Nuclei

Semi-Classical	Coupled-Channel	Rescaling models (Accardia, Pirner,				
Transport (Mose	el, F The mode	The models vary in				
Initial state fro	^{m P} sophistication	, but all can	nfinement of nucleon			
Detailed final s	^{tate} describe the H	ERMES data!	>λ ₀)			
coupled-channel BUU transport model • => PDF's and frag. fcns. modified						
 Tested extensively against many other 						
reactions with lep	Differentiate ar	Differentiate among models:				
probes	extend measurements to more					
	variables and	variables and observables				

Jefferson Lab Experiments: Next 7 Years

E02-104 (Brooks, CLAS EG2) in Hall B

- Took part of data in January-February this year
- Hadronization, transverse momentum broadening surveyed over a wide kinematic range
- E04-002 (Chen, Norum, Wang) in Hall A
 - Hadronization in narrow kinematic bins with good particle ID for charged K and π
 - Waiting to get on the schedule
- Interest in Hall C (Ent, Gaskell, Keppel, Kinney)
 - Transverse momentum broadening in narrow kinematic bins with good particle ID for charged K and π
 - Proposal under discussion

Sample of Anticipated 6 GeV Data

CLAS EG2 Physics Focus

Search for Color Transparency Measure rho absorption vs. Q² at fixed coherence length Compare absorption in deuterium, carbon, aluminum, and iron

E02-110

Quark Propagation through Nuclei Measure attenuation and transverse momentum broadening of hadrons (π , K) in DIS kinematics

Compare absorption in deuterium, carbon, iron, tin, and lead

E02-104

CLAS EG2 Targets

- *Two* targets in the beam simultaneously
- 2 cm LD2, upstream
- Solid target downstream
- Six solid targets:
 - -Carbon

-Aluminum (2 thicknesses)

CLAS EG2 Running Conditions

- Beam energies: 4 GeV (7 day) and 5 GeV (50 days)
- Luminosity: 1.9-2.0 E34 (D+Fe), 1.3 E34 (D+Pb)
- Data taking:
 - DC occupancy < 3%,
 - deadtime 7% (D+Pb) and 14% (D+Fe)
- Number of triggers:
 - 0.6 billion (D+Fe, 4 GeV)
 - 2 billion (D+Fe, 5 GeV)
 - 1.5 billion (D+Pb, 5 GeV)
 - Anticipate ~1 billion (D+C, 5 GeV)
- Primary challenges:
 - Beam current stability
 - Beam profile
 - DAQ stability (December 2003 January 2004)
 - DC gas (summer 2003) and temperature (December 2003)

CLAS Kinematic Coverage and Particle Identification at 6 GeV

Directly identified particles

CLAS EG2 Online Physics Results

Preliminary Results from EG2

- Based on 5% of data with preliminary calibrations
- Disclaimers and caveats:
 - No acceptance correction (small, two targets in the beam)
 - Not final calibrations (should be nearly irrelevant, bins are huge)
 - No fiducial cuts (probably ok, two targets in beam)
 - No radiative correction (effect primarily cancels in ratios)
 - No correction for rho contribution of pi+ (need full statistics to correct for this)***
 - Few-percent kaon contamination in region 2-2.7 GeV
 - No isospin correction for heavy targets(~5%?)
 - No x_F cuts

Multiplicity ratio for pion+:

Hayk Hakobyan, Yerevan State U.

No clear Q² dependence seen

Multiplicity ratio of different Q² strips for pion+ with energy smaller 2 GeV:

— 1<Q²<2

2<Q²<3

Examples of Experimental Data and Theoretical Predictions

Bins in yellow are accessible at 6 GeV

hadron	c au	mass	flavor	detection	production rate
		(GeV)	content	$\operatorname{channel}$	per 1k DIS events
π^0	$25 \mathrm{~nm}$	0.13	$uar{u}dar{d}$	$\gamma\gamma$	1100
π^+	7.8 m	0.14	$u \bar{d}$	direct	1000
π^{-}	7.8 m	0.14	$dar{u}$	direct	1000
η	0.17 nm	0.55	$uar{u}dar{d}sar{s}$	$\gamma\gamma$	120
ω	$23~{ m fm}$	0.78	$uar{u}dar{d}sar{s}$	$\pi^+\pi^-\pi^0$	170
η'	0.98 pm	0.96	$uar{u}dar{d}sar{s}$	$\pi^+\pi^-\eta$	27
ϕ	$44 \mathrm{fm}$	1.0	u ar u d ar d s ar s	K^+K^-	0.8
K^+	3.7 m	0.49	$u\bar{s}$	direct	75
K^-	3.7 m	0.49	$\bar{u}s$	direct	25
K^0	$27 \mathrm{mm}$	0.50	$d\bar{s}$	$\pi^+\pi^-$	42
p	stable	0.94	ud	direct	1100
\bar{p}	stable	0.94	$\bar{u}ar{d}$	direct	3
Λ	$79 \mathrm{mm}$	1.1	uds	$p\pi^-$	72
$\Lambda(1520)$	$13~{ m fm}$	1.5	uds	$p\pi^-$	_
Σ^+	$24 \mathrm{mm}$	1.2	us	$p\pi^0$	6
Σ^0	$22 \mathrm{pm}$	1.2	uds	$\Lambda\gamma$	11
Ξ^0	$87 \mathrm{mm}$	1.3	us	$\Lambda \pi^0$	0.6
[I]	49 mm	1.3	ds	$\Lambda\pi^-$	0.9

Conclusions

- The birth of a new class of experiments
- Exciting opportunity to gain new insight into two fundamental QCD processes – hadronization and gluon bremsstrahlung
- The Next Seven Years new data from all three halls will break new ground
- 12 GeV experiments will be even better

Potential issues

- How much of attenuation is explained by soft gluon radiation?
- Extent to which factorization applies
- Resonances in the residual system
- Distinguish target from current fragmentation?