Structure Functions at Finite Density

Ian Cloet

Supervisors

Wolfgang Bentz and Tony Thomas

CSSM, University of Adelaide.

Outline

The Nambu–Jona-Lasinio (NJL) model:

- Nucleon.
- Quark Distributions
 - Results.
- Finite Density Quark Distributions,
 - Results.
- Conclusion.

The NJL Model

Lagrangian

$$\mathcal{L}_{NJL} = \overline{\psi} \left(i \not \partial - m \right) \psi + \mathcal{L}_{I} (4 - point),$$
$$\mathcal{L}_{I} (4 - point) = G \left(\overline{\psi} \Gamma \psi \right)^{2}.$$

where $\Gamma = \text{Dirac}$, colour, isospin matrices.

Shortcomings:

- No explicit gluons,
- Interaction is point-like \Rightarrow non-renormalizable \rightarrow Need explicit regularization.

Interaction Lagrangians

Using Fierz transformation can decompose \mathcal{L}_I into sum of qq interaction terms.

$$\mathcal{L}_{I,s} = G_s \left(\overline{\psi} \gamma_5 C \tau_2 \beta^A \overline{\psi}^T \right) \left(\psi^T C^{-1} \gamma_5 \tau_2 \beta^A \psi \right),$$
$$\mathcal{L}_{I,a} = G_a \left(\overline{\psi} \gamma_\mu C \vec{\tau} \tau_2 \beta^A \overline{\psi}^T \right) \left(\psi^T C^{-1} \gamma_\mu \vec{\tau} \tau_2 \beta^A \psi \right).$$

Solving BS equation gives

$$\tau_s(q) = \frac{4iG_s}{1+2G_s \Pi_s(q^2)},$$

$$\tau_a^{\mu\nu}(q) = 4iG_a \left[g^{\mu\nu} - \frac{2G_a \Pi_a(q^2)}{1+2G_a \Pi_a(q^2)} \left(g^{\mu\nu} - \frac{q^{\mu} q^{\nu}}{q^2} \right) \right].$$

Faddeev Equation

To determine the nucleon properties we must solve the Faddeev equation.

 $\Gamma_N^a = \frac{3}{M} K^{ab} \Gamma_N^b$, Static Approximation

Model Parameters

- Free Parameters: Λ_{IR} , Λ_{UV} , M_0 , G_{π} , G_s , G_a and G_{ω} .
- Determine as follows:
 - $\Lambda_{IR} = 200 \text{ MeV}, M_0 = 400 \text{ MeV}.$

•
$$f_{\pi} = 93 \text{ MeV} \text{ and } m_{\pi} = 140 \text{ MeV}$$

 $\Rightarrow \quad \Lambda_{UV} = 638.5 \text{ MeV} \text{ and } G_{\pi} = 19.60 \text{ GeV}^{-2}.$

- Fadd. Eq. for Nucleon and $M_N = 940 \text{ MeV} \Rightarrow G_s$.
- G_{ω} fixed such that curve E_B/A v. ρ pass through $(\rho, E_B/A) = (0.17 \text{ fm}^{-3}, -15.7 \text{ MeV})$

Model Parameters cont'd

• This leaves G_a .

- ▶ Fadd. Eq. for Δ (1232) \Rightarrow $G_a = 4.91 \text{ GeV}^{-2}$.
 - To close to SU(6) limit, that is $u(x) \sim 2 d(x)$.
- Choose G_a to reproduce F_{2n}/F_{2p} , d(x)/u(x) and empirical saturation.

W. Melnitchouk, A.W. Thomas, Physics Letters B 377 (1996) 11-17.

Saturation

Model Parameters Summary

●
$$G_a = 2.50 \text{ GeV}^{-2}.$$

• $G_s = 7.97 \text{ GeV}^{-2}$.

■ $1 + 2G_a \Pi_a (q^2 = M_s^2) = 0 \Rightarrow M_a = 990$ MeV.

■
$$1 + 2G_s \Pi_s (q^2 = M_s^2) = 0 \Rightarrow M_s = 658$$
 MeV.

•
$$G_{\omega} = 6.40 \text{ GeV}^{-2}$$
.

The Quark Distributions f(x) and $\Delta f(x)$.

Formally

$$f(x) = \int \frac{d\xi^{-}}{4\pi} e^{i x P^{+} \xi^{+}} \langle P, S | \overline{\psi}(0) \gamma^{+} \psi(\xi^{-}) | P, S \rangle_{c},$$
$$\Delta f(x) = \int \frac{d\xi^{-}}{4\pi} e^{i x P^{+} \xi^{+}} \langle P, S | \overline{\psi}(0) \gamma^{+} \gamma_{5} \psi(\xi^{-}) | P, S \rangle_{c}.$$

Can show

$$f(x) = \frac{1}{2P^+} \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k^+}{P^+}) \operatorname{Tr} \left[\gamma^+ M(P, k)\right],$$

$$\Delta f(x) = \frac{1}{2P^+} \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k^+}{P^+}) \operatorname{Tr} \left[\gamma^+ \gamma_5 M(P, k)\right].$$

f(x) and $\Delta f(x)$

- \square M(P,k) is the quark two-point function in the nucleon.
- Therefore f(x) and $\Delta f(x)$ can be associated with a straight forward Feynman diagram calculation.

Quark distributions in the Proton

$$u_V(x) = f_{q/P}^s(x) + \frac{1}{2} f_{q(D)/P}^s(x) + \frac{1}{3} f_{q/P}^a(x) + \frac{5}{6} f_{q(D)/P}^a(x),$$

$$d_V(x) = \frac{1}{2} f_{q(D)/P}^s(x) + \frac{2}{3} f_{q/P}^a(x) + \frac{1}{6} f_{q(D)/P}^a(x),$$

$$\begin{split} \Delta \, u_V(x) &= f_{q/P}^s(x) + \frac{1}{2} \, f_{q(D)/P}^s(x) + \frac{1}{3} \, f_{q/P}^a(x) \\ &\quad + \frac{5}{6} \, f_{q(D)/P}^a(x) + \frac{1}{2\sqrt{3}} \, f_{q(D)/P}^m(x), \\ \Delta \, d_V(x) &= \frac{1}{2} \, f_{q(D)/P}^s(x) + \frac{2}{3} \, f_{q/P}^a(x) \\ &\quad + \frac{1}{6} \, f_{q(D)/P}^a(x) - \frac{1}{2\sqrt{3}} \, f_{q(D)/P}^m(x), \end{split}$$

$u_V(x)$ distribution

MRST, Phys. Lett. B **531**, 216 (2002).

$d_V(x)$ distribution

MRST, Phys. Lett. B **531**, 216 (2002).

$\Delta u_V(x)$ distribution

M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

$\Delta d_V(x)$ distribution

M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

Finite Density Quark Distributions

- Scalar field: via effective masses
- Fermi motion: via convolution with smearing function $\Delta f_{N/A}(y_A)$, giving $\Delta f_{q/A0}(\tilde{x}_A)$.
- Vector field: via scale transformation

$$\Delta f_{q/A}(x_A) = \frac{\varepsilon_F}{E_F} \Delta f_{q/A0} \left(\tilde{x}_A = \frac{\varepsilon_F}{E_F} x_A - \frac{V_0}{E_F} \right),$$

where
$$\varepsilon_F = \sqrt{p_F^2 + M_N^2} + 3V_0 \equiv E_F + 3V_0$$

 $u_V(x)$ distribution

 Δu_V distributions

Spin-Independent EMC effect

g_{1p} and g_{1A}

Spin-dependent EMC effect

Conclusions

- Using a modified NJL model we have:
 - Successfully described nucleon as a quark-diquark bound state.
 - Reproduced the empirical nuclear saturation.
 - Achieved good results for two of the leading-twist proton quark distributions.
 - Calculated medium modifications to these distributions.
- Achieved this with only 7 input parameters.
- We find: $g_A = 1.17$; Experiment: $g_A = 1.267 \pm 0.011$.
- In nuclear matter, we find $g_A = 0.94$.