Exploring the Role of Pions in the Nucleus

Dave Gaskell Jefferson Lab

PN12 - November 3, 2004

- Nuclear forces and "excess" pions
- The ambiguous experimental landscape
 - -> DIS and Drell-Yan results
 - -> (p,n) Reactions
 - -> Pion electroproduction
- $\boldsymbol{\cdot}$ New Directions

Pions as Constituents

- QCD describes strong interactions at the most fundamental level
 - hadrons (nucleons) are made of quarks and gluons
- However, cannot generate nucleon parton distributions from 3 quarks + Q² evolution
- A meson cloud is required to understand the structure of the nucleon
 - Nucleon axial current partially conserved
 - Ability to extract pion form factor from H(e,e' π^+)
 - Asymmetry of nucleon sea -> $\overline{d}/\overline{u}$

Charged Pion Form Factor from Pion Electroproduction

- No "free pion" target -> extraction of pion form factor at large Q2 requires use of "virtual pion" content of the proton
- Excellent agreement between π+e elastic data and p(e,e'π⁺)n

Sea-Quark Asymmetry from Drell-Yan

- Fermilab E866 measured D-Y cross section ratios $\sigma(p+d)/\sigma(p+p)$
- Extracted results for $\overline{d} \overline{u}$ favor pion cloud models

J.C. Peng et al., Phys. Rev. D58, 092004 (1998)

Pions in "Conventional" Nuclear Physics

- Yukawa's initial insight -> π as carrier of strong force has proved remarkably durable
- Modern effective NN forces (Bonn, Argonne V-18) are significantly more complex, but the fundamental principle is the same
 - Employ additional mesons (p, etc.)
 - Form factors control pion contributions at short distances
 - 3N interactions?
- Effective NN forces work!
 - Green's Function Monte Carlo calculations accurately reproduce nuclear properties up to $^{\rm 12}{\rm C}$
 - Only limited by CPU
- These effective theories predict that there should be "extra" virtual pions in the nucleus

The Pion Excess and Pions in the Nucleus

 Using either mean field calculations or detailed N-N forces one can calculate a "pion excess" ->

 $\delta n_{\pi}^{A}(k) = n_{\pi}^{A}(k) - n_{\pi}^{N}(k)$

- Friman et al. used Argonne v28 and found about 0.18 extra pions per nucleon in nuclear matter
- A significant portion of the excess arises from the $\pi N\Delta$ coupling -> with no Δ states only 0.04 "extra" pions

Pion excess $k^2 \langle \delta n_{\pi}(k) \rangle / 2\pi A$ as a function of virtual pion momentum

Friman, Pandharipande, and Wiringa, PRL 51 763 (1983)

Accessing Pions in the Nucleus

- There is a clear indication that the pion cloud of the nucleon is real
- If we are able to access the nucleon pion cloud, we should also be able to access the nuclear pion cloud
- Experimental access to virtual pions in the nucleus
 - Deep Inelastic Scattering (EMC Effect)
 - Drell-Yan Reaction (antiquark distributions in the nucleus)
 - (\vec{p}, \vec{n}) scattering (Nuclear Longitudinal Response)
 - Pion electroproduction (virtual pion knockout)

Deep Inelastic Scattering - the EMC Effect

- At large Q^2 , $F_2(x,Q^2)$ -> $F_2(x)$: scattering from constituents
- In pion model one can also scatter from constituents in pions exchanged between nucleons
- Original EMC result (1983) was initially interpreted in this manner
- Enhancement at x<0.2 is significantly smaller in later data

Berger-Coester Model of EMC Effect

- Ericson and Thomas:
 - Pion distribution in nucleus, $f_{\pi}^{A}(y)$, calculated in terms of $R_{L}(q,\omega)$

$$f_{\pi}^{A}(y) = \frac{3g^{2}}{16\pi^{2}} y \int_{M_{Ny^{2}}}^{\infty} dk^{2} \int_{0}^{k-M_{Ny}} d\omega \frac{k^{2} |G_{\pi NN}(k^{2})|^{2}}{(t+m_{\pi}^{2})^{2}} R_{L}(k,\omega)$$

- B-C calculations links $f_{\pi}^{A}(y)$ directly to pion excess
- Results agrees well with later EMC ratio results down to x~0.2

E. Berger and F. Coester, Phys. Rev. D32, 1071 (1985)

Nuclear Dependence of Drell-Yan

- Drell-Yan samples antiquark distributions in target
 - should be more sensitive than DIS to pion contributions
- E-772 (FNAL) measured the A dependence of Drell-Yan
- No apparent nuclear dependence
- Appears to rule out models that predict a significant pion excess

D.M. Alde et al., PRL 64 2479 (1990)

Polarization Transfer Reactions

- Pion excess effects on F_2 and D-Y come about from enhancement of $R_L(q,\omega)$
- Rather than trying to extract pion excess effects via convolution integral, maybe simpler to measure $R_L(q,\omega)$ directly
- (\vec{p},\vec{n}) scattering directly sensitive to the isovector part of the nuclear response

J. B. McClelleland et al., PRL 69 582 (1992)

Separated Response Functions in Polarization Transfer

- Initial polarization transfer results inconsistent with RPA calculations that included pion excess effects
 - Only reported ratio of responses
 - No effect expected on $R_{\rm T}$
- A later extraction of the separated response functions $(R_L \text{ and } R_T)$ hinted at an enhancement of both, but with large systematic errors

Taddeucci *et al.*, PRL **73** 3516 (1994)

Quasifree Pion Electroproduction

- Pole process dominates longitudinal cross section
 - Charged π production = virtual pion knockout
- JLab exp. E91003 measured charged π electroproduction from H,D and ³He (⁴He)
 - Extracted σ_L mass dependence
 - 2 values of virtual pion momentum sampled: k=200, 470 MeV/c
- Based on Friman et al. calculations, might expect up to 15% effects (25% for ⁴He)
- Uncertainties are too large to confirm or rule out effects from excess pions

Coherent Pion Electroproduction

- Coherent ³He(e,e'π⁺)³H
 process can also be used to
 probe pion field of nucleus
 - In a factorized approximation:

 $\sigma(^{3}H) = \rho F^{2}(k)\sigma(H)$

- F(k) is ³He form-factor, ρ is kinematic factor
- Results from Mainz and Jlab E91003 hint at an enhancement of the longitudinal strength
 - E91003 compared directly
 ³He to H directly
 - Mainz compared to DWIA calculation using MAID

E91003 $\sigma_L(^{3}H)/\sigma_L(H)$: Prediction -> 0.42 Result -> 0.50 +/- 0.08

Mainz: $\sigma_L 2x$ larger than DWIA calculation

Nuclear Pion Scorecard

- 1. EMC effect: maybe
 - Calculations including pion excess can do a good job down to $x \sim 0.2$
 - These models predict significant effects in Drell-Yan scattering
- 2. Drell-Yan: no
 - All models including significant pion effects inconsistent with E772 data
 - A reduced pion content is allowed (G. Miller), but then convolution EMC calculations suffer
 - Not a problem if we're happy to introduce more exotic physics at moderate x (~0.2-0.6)

3. Polarization transfer: maybe

- Separated response functions consistent with pion excess calcs., but large error bars
- 4. Pion Electroproduction: maybe
 - Quasifree production needs smaller errors and ⁴He
 - Coherent production tantalizing, but not really conclusive

Pions are in Nucleons - What About Nuclei?

- There are experimental indications that the pion cloud plays a significant role in nucleon structure
- Why can we not see similar effects in nuclei?
- Either we need totally new probes, or we're misusing the probes we have

New Directions

- If pion excess leads to enhancement of antiquark distributions and we can't see that at low x, maybe we need to go higher?
 - Drell-Yan at higher x
 - Fermilab E906 will measure Drell-Yan at larger x
 - Separated inclusive cross sections
 - G. Miller predicts large effects for the A-dependence of σ_L at moderate x (~0.4)
- JLab at 12 GeV
 - (EMC Effect at large x)
 - Semi-inclusive production
 - More exclusive and semi-exclusive pion electroproduction

Fermilab E906

- Approved Fermilab E906 will extend precision and x-range of E772 Drell-Yan measurements
- If B-C model has correct trend but wrong absolute value, should be able to discern by going to larger x
- Date of E906 run still TBD

Inclusive Electron Scattering

- G. Miller light front calculation predicts large effects in the inclusive, longitudinal cross section
- Accurately reproduces existing D-Y data -> requires rather modest pion excess (~0.05/nucleon)
- JLab E02-109 and E04-001 will measure L-T separated cross sections where effect predicted to be large
- E91003 measured exclusive pion production at Q2=0.4, x=0.48 and saw no indication of such large effects - ³He not heavy enough?

G. Miller, Phys. Rev. C64, 022201 (2001)

Semi-inclusive Production from Nuclei

- Explore v and z dependence of hadronization effects at x ~0.3 (no EMC effect)
- Use semi-inclusive meson production to explore flavor specific EMC effect or nuclear dependence of sea asymmetry

Nuclear Response at Large Virtual Pion Energies

 Size of the pion excess can be related to the spin-isospin longitudinal nuclear response

$$\delta n_{\pi}^{A}(k) = \frac{f^{2}F^{2}(k)}{2\varepsilon_{k}} \int_{0}^{\infty} d\omega \frac{R_{L}(k,\omega)}{[\varepsilon_{k}+\omega]^{2}} - n_{\pi}^{N}(k)$$

- In NN correlated theory, much of the excess pion strength appears at large virtual pion energy, ω -> D. Koltun, Phys. Rev. C 57, 1210 (1998)
- Large ω contributions suppressed in the convolution integrals used for calculating light-cone pion distribution in nuclei

$$f_{\pi}^{A}(y) = \frac{3g^{2}}{16\pi^{2}} y \int_{M_{N}^{2}y^{2}}^{\infty} dk^{2} \int_{0}^{k-M_{N}y} d\omega \frac{k^{2} |G_{\pi NN}(k^{2})|^{2}}{(t+m_{\pi}^{2})^{2}} R_{L}(k,\omega)$$

- Pion electroproduction at large missing mass (z<1) can probe the longitudinal response at large ω

(Semi-) Exclusive Pion Electroproduction

- In parallel kinematics, exclusive pion electroproduction from nuclei samples a contour in virtual pion energy and momentum space
- If restricted to exclusive production (below 2-pion threshold) will never measure large ω
- Must map out transition between semi-inclusive and exclusive nucleon/deuterium (longitudinal and transverse!)
- Compare z<1 in nuclei to calculations that include
 - 1. Quasifree pion production
 - 2. z<1 pion production from nucleon

Missing mass spectrum for (quasifree) π^{-} production from ³He

Pion Electroproduction at 12 GeV

- Advantages of 12 GeV JLab for pion electroproduction search for nuclear pions
 - At z<1, higher energies will reduce resonance effects in residual system -> simplify model calculation of quasifree+fragmentation(?) components of electroproduction cross section in nuclei
 - At higher energies, color transparency may allow us to use heavier nuclei. Currently limited to light nuclei (³He, ⁴He) because of pion re-scattering effects

Summary

- Pions seem to be an intrinsic, nonperturbative part of nucleon structure
- Conventional pictures of the strong force at large and medium distance scales require pions to be the force "carrier"
- These theories predict that there should be "extra" pions in the nucleus
- To date, there is no convincing experimental evidence these "nuclear pions" have been observed
- JLab at 12 GeV
 - EMC Effect at large x
 - Semi-inclusive studies
 - L-T separated exclusive and semiinclusive cross sections

