

New Magnetron configurations for sputtered Nb onto Cu

A.Frigo, <u>G.Lanza</u>, H.Padamsee, V.Palmieri, J.Bermudez

CERN geometry

C. Benvenuti, S. Calatroni, I.E. Campisi, P. Darriulat, M.A. Peck, R. Russo, A.-M. Valente, "*Study of the surface resistance of superconducting niobium films at 1.5 GHz*", Physica C 316 (1999) 153-188.

Cylindrical Magnetron

Understanding:

• Film morphology strictly correlated to the deposition angle

Electrical and superconducting film properties degrade vs deposition angle

 Comprehension of sputtering principles is compulsory for conceiving new magnetron configurations

Deposition technique: magnetron sputtering

Ideas to improve the film quality:

1. Increasing the sputtering rate R

$$f_i = \frac{N_i \alpha_i}{N_i \alpha_i + R}$$

 f_i = Fraction of impurities trapped into the film α_i = Impurities sticking coefficient

N_i = Number of atoms impurities arriving on the film surface

2 inches planar target

2 inches squared target

2 inches rounded target

Niobium ring positioned in the cell center

Ideas to improve the film quality:

- 1. Increasing the sputtering rate **R**
- 2. Reducing the deposition angle
- 3. Promoting atoms rearrangement and impurities re-sputtering during film growing

$$f_i = \frac{(N_i \alpha_i - \beta)}{(N_i \alpha_i - \beta) + R}$$

- f_i = fraction of impurities trapped into the film
- α_i = impurities sticking coefficient
- N_i = atoms impurities arriving on the film
- B = function of the bias current due to impurities ions
- **R** = sputtering rate

Biased Diode Sputtering

Bias LNL Up to now

The bias technique is highly reliable: over 40 QWRs are installed and working at LNL

Biased grid

Ideas to improve the film quality:

- 1. Increasing the sputtering rate **R**
- 2. Reducing the deposition angle
- 3. Promoting atoms rearrangement and impurities re-sputtering during film growing

4. Increase the cathode/substrate area ratio

Biased Diode Sputtering

Cavity shaped cathode

High ratio cathode/substrate area

Cavity shaped cathode

in progress...

Three new magnetron sputtering configurations are ready!

...soon 20 cavities to measure.

Cylindrical Post-Magnetron

Magnetic field lines follow the cavity shape

Niobium cathode

Optimizing new magnetron sputtering configurations is compulsory for achieving!

