UNIVERSITÀ DEGLI STUDI DI PADOVA SCIENCE FACULTY

MATERIAL SCIENCE DEGREE

INFN – LABORATORI NAZIONALI DI LEGNARO

DIEGO TONINI

MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET – SUBSTRATE ANGLE

2 QUESTIONS...

What is the effect of target – substrate angle on the film properties?

How the film morphology varies changing target – substrate angle?

MULTI-ANGLE SAMPLE HOLDER

 7 substrates coated in the same run

 Almost identical process conditions for each sample

DC MAGNETRON SPUTTERING

• LOWER T_c AND *RRR INCREASING TARGET – SUBSTRATE ANGLE*

PULSED MAGNETRON SPUTTERING

DC MAGNETRON SPUTTERING WITH SUBSTRATE HEATING

Substrate temperature kept at 600 °C during process

1. Better properties

2. Less angle sensitivity

XRD SPECTRA OF FILM DEPOSITED AT DIFFERENT TARGET – SUBSTRATE ANGLE

DC MAGNETRON SPUTTERING

0 gradi

15 gradi

30 gradi

75 gradi

45 gradi

60 gradi

PULSED MAGNETRON SPUTTERING

0 gradi

TEXTURE ANALYSIS

DC VS PULSED MAGNETRON SPUTTERING

ATOMIC FORCE MICROSCOPY TOPOGRAPHIC IMAGES

ATOMIC FORCE MICROSCOPY DC MAGNETRON SPUTTERING

Variable thickness

Uniform thickness

ATOMIC FORCE MICROSCOPY PULSED MAGNETRON SPUTTERING

I campioni depositati in corrente pulsata sono sistematicamente più rugosi

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY NYQUIST PLOT

FLAT ELECTRODE:

Real part of impedance represents R_s at any frequency

Immaginary part does not vary with frequency

NYQUIST PLOT IS A VERTICAL LINE

POROUS/ROUGH ELETRODE:

The apparent capacity C_{dl} depends on frequency because the penetration length of electric field inside the pores raises when decreasing frequency.

NYQUIST PLOT IS A 45° INCLINED LINE

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY DC MAGNETRON SPUTTERING

VARIABLE FILM THICKNESS

Up to 45° there is porous electrode behaviour

Film deposited at higher angles are less thick so resistence is greaer

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY DC MAGNETRON SPUTTERING

COMPARISON BETWEEN FILM WITH DIFFERENT THICKNESS AND FILM WITH CONSTANT THICKNESS

Films with the same thickness have the same resistance

There is a maximum in capacity at 60° target – substrate angle

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY DC MAGNETRON SPUTTERING

Films with the same thickness – measures in passivaton condition

Imposed potential to create a passivation layer on the film

Oxide tichkness depends only on applied potential

Oxide growth follows niobium film morphology

Capacity shows the same angle dependence of non oxidized films

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY PULSED MAGNETRON SPUTTERING

MAGNETO-OPTICAL ANALYSIS

OFHC copper substrate (not electropolished)

Target – substrate angle: 0°

Good connectivity respect to vortex penetration

Target – substrate angle: 45°

Vortex penetrate along substrate discontinuity

SIMULATION OF THIN FILM GROWTH

<u>CONCLUSIONS</u> <u>s.c. and transport properties</u>

Properties depend on target – substrate angle

Pulsed magnetron sputtering and heating of the substrate reduce the angle dependence

Films deposited at higher angles tend towards amorphization

Lattice parameter has a maximum at 60° target – subtrate angle

(110) crystal planes of the growing film orient along niobium atoms arrival direction

This effect is reduced using pulsed magnetron deposition

There is a maxmum in roughness between 60° and 75° target – substrate angle

This is not a thickness effect but is due to deposition dynamics

