Ways of introducing coupled channels

Volker Credé

- Meson Spectroscopy with the Crystal–Barrel Detector
 - 1. Data sets with different initial states but the same final state particles
 - 2. Data sets with particles belonging to the same isospin multiplet
 - 3. Data sets with different final states
- Baryon Spectroscopy with CB–ELSA and CLAS
 - Photoproduction of two–pion final states
- Comparing ways of introducing coupled channels
 - CMB model, K–matrix, Breit–Wigner models

Florida State University, 206 Keen Building, Tallahassee, FL 32306

) Different Initial States \rightarrow Same Final State Particles

x 10 ³

Example: $\overline{p}p \to \pi^0 \pi^0 \eta$

Probability for S− and P−wave annihilation depends on target pressure
 ⇒ Dalitz plot changes with pressure

1) Different Initial States \rightarrow Same Final State Particles

In single-channel analysis of LH_2 data set, P-wave annihilation was neglected (Crystal Barrel Collaboration, C. Amsler et al., Phys. Lett. **B333** (1994) 277)

- Why? Inclusion leads to dramatic increase of number of parameters in the fit \Rightarrow often leads to unphysical solutions
- Solution:Adding gaseous hydrogen data yields additional information \Rightarrow Inclusion of P-wave annihilation possible
 - Amplitudes for specific initial state remain the same for $LH_2 \rightarrow GH_2$ \Rightarrow Relative fraction of the different initial states changes
 - Relative ratios for S– and P–wave annihilation taken from cascade models

Coupled-channel analysis supports evidence for the exotic state $\pi_1(1400)$ observed before in $\overline{p}d \rightarrow \pi^- \pi^0 \eta p_{\text{spectator}}$

Volker Credé

Observation of an exotic $J^{PC} = 1^{-+}$ state

Most prominent candidate for an exotic hybrid state: $\pi_1(1400)$

52567 events in the Dalitz plot

$$PWA \begin{cases} {}^{3}S_{1} & \rho^{-}(770), \ \rho^{-}(1450), \ a_{2}(1320) \\ {}^{1}P_{1} & a_{0}(980), \ a_{0}(1450) \end{cases}$$

$$\Rightarrow \text{ confirmation of exotic state} \\ \text{ in analysis of } \overline{p}p \rightarrow \pi^0 \left(\pi^0 \eta \right) \\ \text{ (PhD thesis Mario Herz, Bonn 1997)}$$

Dalitz plot from: Abele et al., Phys.Lett. **B423** (1998) 175 Exotic $\eta\pi$ state in $\overline{p}d$ annihilation at rest into $\pi^{-}\pi^{0}\eta p_{\text{spectator}}$ in agreement with D.R. Thompson et al. (E852 collaboration)

2) Isospin Coupling Analyses: $\overline{p}N$ Annihilation into 3π

Additional constraints by combining data sets with particles belonging to the same isomultiplet

- isospin weights
- different interference effects

Similar to what Curtis pointed out for $\gamma p \rightarrow p 4\pi$

• However, GlueX much more complicated !

2) Isospin Coupling Analyses: $\overline{p}N$ Annihilation into 3π

Three of these Dalitz plots have been part of a coupled-channel analysis (still in preliminary state):

- Restriction of $\overline{p}n$ to I = 1 initial states $\Rightarrow {}^{1}S_{0}, {}^{3}P_{1}, \text{ and } {}^{3}P_{2}$
- In $\overline{p}p \rightarrow \pi^+\pi^-\pi^0$, 3S_1 and 1P_1 also possible
- Amplitudes for annihilation can be coupled by the following isospin relations

$$A_{(\pi^{+}\pi^{-})-S-wave} = -\sqrt{2} \cdot A_{(\pi^{0}\pi^{0})-S-wave}$$
$$A_{(\pi^{+}\pi^{-})-P-wave} = +1 \cdot A_{(\pi^{-}\pi^{0})-P-wave}$$
$$A_{(\pi^{+}\pi^{-})-D-wave} = -\sqrt{2} \cdot A_{(\pi^{0}\pi^{0})-D-wave}$$

- Overall scaling factor in order to account for different contributions from initial S- and P-wave annihilation in LH_2 and LD_2
- \Rightarrow Data are reasonably well described!

(Parameters of the higher–mass vectors determined: $\rho(770)$, $\rho(1450)$, $\rho(1700)$

2) Isospin Coupling Analyses: $\overline{p}N$ Annihilation into 3π

Volker Credé

3) Different Final States

Volker Credé

3) Different Final States

Analysis by Crystal Barrel including $\overline{p}p \rightarrow 3\pi^0, 2\pi^0\eta, \pi^0 2\eta$ + CERN–Munich scattering data

(Crystal Barrel Collaboration, C. Amsler et al., Phys. Lett. **B355** (1995) 425)

• Investigation of resonances in different decay modes

 \Rightarrow Production of resonance with certain spectator does not depend on decay

- Masses, widths, and production strengths of resonances must be the same in all different channels
- Measurement of resonance coupling to one channel automatically determines corresponding inelasticity in the other channels
- 0^{++} -wave described by using 3 x 3 K-matrix including couplings to the $\pi^0 \pi^0$, $\eta \eta$, and K K channel
 - \Rightarrow Latter parameterizes inelasticity into all other open channels because no corresponding data was included in the analysis
 - \Rightarrow Allowed determination of couplings of f₀(1500) to $\eta \eta$ relative to $\pi^0 \pi^0$

 m_1

The technique of Partial Wave Analysis

Measured intensity (incoherent sum over all possible $\overline{p}N$ initial states):

 \Rightarrow Parametrization of \hat{F} in K-matrix formalism $\hat{F} = (I - i\hat{K}\rho)^{-1} \quad \hat{P}$

Summary: Meson Spectroscopy

Procedure worked very well for Crystal Barrel data

 \Rightarrow Isobar model: series of successive two–body decays

Effects from

- direct three–body production
- t-channel exchange processes
- rescattering in the final state

are neglected!

 \Rightarrow One has to be careful concerning the interpretations of broad poles found in the PWA !

What's the applicability for the CB model?

- Radiative J/ ψ decays and D decays, e.g. D $\rightarrow K\pi\pi$ (CLEO data) (\checkmark)
- GlueX \rightarrow would have to be extended! Much more complicated!
- What about baryons?

Investigation of $\pi\pi$ Photoproduction at ELSA and CLAS \Rightarrow Complementary Detectors !

3-body final states are key for the discovery of missing states!

- Account for most of the cross section above $W\approx 1.7~{\rm GeV}$
- 2-body final states largely explored \Rightarrow No new states definitely found !
- Preliminary results: a) Polarization is key to unambiguous interpretation !

$$\begin{array}{rcl} \gamma \mathbf{p} \to \ \Delta \pi^0 \\ & \Delta \to \mathbf{p} \pi^0 \end{array}$$

Advantages of $\pi^0 \pi^0$ photoproduction:

- No ρ amplitudes
 - No diffractive ρ production
 - Reduces the number of possible N^* decay amplitudes
- No direct $\gamma p \rightarrow \Delta^{++}\pi^{-}$ production (strong in $\gamma p \rightarrow \pi^{+}\pi^{-}p$)

Advantages of $\gamma p \rightarrow p \pi^+ \pi^-$:

 \bullet Provides additional information on ${\rm N}\rho$

 \Rightarrow Idea: Combined analysis of both channels!

Definitions

Rescattering:

When different states (same Q, $J\pi$) couple to each other with similar strength, any propagation must be a quantum-mechanical mixture of all states! (e.g. $\rho K \rightarrow K^* \pi$)

Likely to be important for D decays

Possibly important for D decays

Coupled Channel:

If different final states are possible (same Q, J π), they must be treated on common basis (matrix) (e.g. D $\rightarrow K^{*-}\pi^+ \rightarrow K^- \pi^0 \pi^+$ versus D $\rightarrow K^{*-}\pi^+ \rightarrow K_s^0 \pi^- \pi^+$) How to analyse the data: Available Tools (models)

Two steps:

- 1. Partial wave decomposition (analysis):
 - \Rightarrow Helicity Formalism, Covariant Formalism (operator formalism), etc.
- 2. Determination of resonance properties

Model/Effect	Rescattering	Coupled Channel
Breit–Wigner	Rudimentary	None
K-matrix	Good	Very good
CMB	Excellent	Excellent

Is this important?

 \Rightarrow Rescattering and coupled-channel effects known to be important for baryons!

CMB model for baryons: scattering amplitude

$$T_{ab}^{CMB}(s) = \sum_{i,j} \sqrt{\rho_a(s)} f_a(s) \gamma_{a\,i} G_{i\,j}(s) \gamma_{j\,b} f_b \sqrt{\rho_b(s)}$$

 $\mathbf{b} = \mathbf{N}\,\pi,\,\mathbf{N}\,\eta,\,\Delta\,\pi,\,\pi\,N^*,\,\mathbf{N}\,\rho,\,\mathbf{K}\,\lambda,\,\dots$

- $\gamma_{a\,i}$ is (real) coupling between a (e.g. N π) and i (e.g. S₁₁(1535))
- ρ_a is phase space for final state a
- f_a is a form factor (fixed, empirical)
- G_{ij} has all the action, full rescattering
- Every model has these elements in some form !

See Phys. Repts. 328, 181 (2000) for detailed discussion

CMB model for baryons: scattering amplitude

$$G_{ij} = G_{ij}^{0} + \sum_{k,l} G_{ik}^{0} \Sigma_{kl} G_{lj}$$

= $G_{ij}^{0} + \sum_{k,l} G_{ik}^{0} \Sigma_{kl} G_{ij}^{0} + \sum_{k,l,m,n} G_{ik}^{0} \Sigma_{kl} G_{lm}^{0} \Sigma_{mn} G_{nj}^{0} + \dots$

$$G_{ij}^{0} = \frac{\epsilon_{i} \,\delta_{ij}}{s - s_{0,i}} \quad \begin{array}{l} \text{Bare pole,} \\ \epsilon_{i} = -1 \text{ for resonance} \end{array} \qquad \begin{array}{l} \Sigma_{kl} = \sum_{c} \gamma_{kc} \,\phi_{c} \,\gamma_{cl} \\ \text{generates width !!} \end{array} \qquad \begin{array}{l} \text{Dyson equation} \\ \text{generates width !!} \end{array}$$

- Fitting constants s_0 and γ_{ia}
 - ⇒ 1 bare mass for every resonance and one coupling constant for each open channel (e.g. $N\pi$)
- For baryons, up to 9 constants per resonance (many)
- Unitarity for 2–body and quasi–2–body final states
- Analyticity through dispersion relations

Relationship of CMB to K-matrix model

$$T_{ab}^{CMB}(s) = \sum_{i,j} \sqrt{\rho_a(s)} f_a(s) \gamma_{a\,i} G_{i\,j}(s) \gamma_{j\,b} f_b \sqrt{\rho_b(s)}$$
$$K_{ab}^i(s) = \sqrt{\rho_a(s)} f_a(s) \gamma_{a\,i} G_{i\,j}^0(s) \gamma_{j\,b} f_b \sqrt{\rho_b(s)}$$

$$K_{ab} = \sum_{i \in res} K^i_{ab} K^{\text{nonres}}_{ab}$$

 K_{ab} is a real quantity, condition for unitarity; nonres is issue for N^{*}

 $T_{a\,b} = \frac{K_{a\,b}}{1 - iK_{a\,b}}$

This does the rescattering, well proven to include only on-shell pieces. This cannot have full analytic description.

N.B. This is very similar to Chung, Klempt (Z. Phys. (1995))

Case study: S_{11} states near $N\eta$ threshold

Notation: $L_{2I,2J}$, where

- $L = orbital angular momentum as if N\pi$ (e.g. S, P, D, etc.)
- I = isospin of N^{*} resonance (I = 1/2, 3/2)
- J = total angular momentum of N^{*} (J = 1/2, 3/2, 5/2, etc.)

For this reason, S_{11} is an L = 0 state with I = J = 1/2, $\pi arity = -$

- S_{11} refers to L = 0 in the $N\pi$ system
- P-wave excitation of 1 quark in the NRQM

2 states, $S_{11}(1535)$ and $S_{11}(1650)$, and each couples mostly to N π and N η !

What's the nature of the $S_{11}(1535)$?

Why does it decay strongly into N η and S₁₁(1650) does not?

- Two states S_{11} have appreciable mixing ($\approx 30^{\circ}$) (N. Isgur and G. Karl, Phys. Lett. **72B** (1977) 109.)
- Phenomenological fit to baryon decays ($\approx 30^{\circ}$)
- Coupled Σ K-p η effect (Kaiser, Siegel and Weise) \Rightarrow No genuine 3-quark resonance required
- Amplitude analysis (G. Hoehler) \Rightarrow No pole is needed for N(1535)S₁₁
- Quark-diquark structure (Glozman and Riska)

 \Rightarrow Extraction of resonance properties important!

Interpretation of $S_{11}(1535)$

FIT(1535)	$\Gamma_{\rm full}({\rm MeV})$	$\mathrm{BR}_{\mathrm{N}\pi}$	$A_{1/2}$	comment
VPI(96)	105	0.31	60 ± 15	$N\pi \to N\pi$
Drechsel(99)	80	0.40	67	$\gamma p \rightarrow p \pi$
Krusche(97)	212	0.45	120 ± 20	$\gamma p \rightarrow p \eta$
Pitt-ANL(00)	126	0.34	87 ± 3	All
PDG	100 - 200	0.35 - 0.55	90 ± 30	Averaging

- 1. If we use $N\pi$ or $N\eta$ data, we get different answers!!
- 2. If we use coupled-channel model, we get intermediate result.

We expect rescattering and resonance interference to matter!

- Since $S_{11}(1535)$ ($\Gamma = 130 MeV$) and $S_{11}(1650)$ ($\Gamma = 200 MeV$) overlap, we must consider quantum mechanical interference
- Since $S_{11}(1535)$ decays roughly equally to $N\pi$ and $N\eta$, we must consider coupled-channel effects

For this reason, design a little study that tests model dependence of (a) Breit–Wigner versus (b) K–matrix versus (c) CMB model:

- Use identical data input
- Use models as close as possible to others

 \Rightarrow Work of Alvin Kiswandhi at FSU

Scattering amplitude 'data' $(S_{11} \text{ only})$

CMB model fit

Two–resonance, two–channel CMB model

- Fit not perfect missing channels \Rightarrow e.g. $\Delta \pi$
- Non-res. important close to $N\pi$ threshold
- Errors of many parameters within errors of full model

total amp.
resonant amp.
non-resonant

K-matrix model fit

K-matrix model

- Fit very similar to CMB model
- At $W \approx 1.6$ GeV, difference in Im $T(N\pi \rightarrow N\pi)$

total amp.

0.9 0.5 0.7 0.3 Re T(π N \rightarrow π N) $T(\pi N - \lambda \pi)$ 0.1 0.5 -0.1 0.3 -0.3 <u></u> 0.1 -0.5 -0.7 -0.1 0.3 0.3 Re T(πN -> ηN) $(\pi N - \gamma \eta N)$ 0.1 -0.1 <u>ے۔</u>... -0.3 -0.5 -0.5 1.2 1.8 1.2 1.4 1.6 1.8 2 resonant amp. 1.4 1.6 1 Energy (GeV) non-resonant

Breit–Wigner model fit

Breit–Wigner model

- Extra phase necessary to get good fit
- Fits with BW best and worse
- Difference in res. versus nonres. with respect to CMB and K-matrix!

- total amp.

 \cdots resonant amp.

--- non-resonant

Results

model	CMB	Κ	BW	PDG
Mass [MeV]	1532 ± 2	1533 ± 1	1538 ± 2	1520 - 1555
Width [MeV]	124 ± 6	119 ± 3	130 ± 6	100 - 200
BR _{Nπ} [%]	30 ± 2	33 ± 1	38 ± 1	35 - 55
Mass [MeV]	1685 ± 2	1682 ± 2	1647 ± 2	1640 - 1680
Width [MeV]	168 ± 6	184 ± 5	109 ± 5	145 - 190
BR _{Nπ} [%]	79 ± 2	75 ± 1	51 ± 1	55 -90
χ^2/N	3.8	3.7	5.0	

Errors shown come from Minuit

 $S_{11}(1650)$

Interpretation and Conclusion

- Results not far from PDG for CMB and K−matrix
 ⇒ Truncated model is ok
- Range of model results comparable to PDG error range
 - \Rightarrow PDG averages over various model results, i.e. it includes both statistical and systematic errors
- BW results are not close to CMB and K–matrix
 - $\Rightarrow~$ Lack of theoretical constraints is problem and requires ad–hoc parameters to fit the real data
 - $\bullet\,$ CMB and K–matrix results 1–2 $\sigma\,$ apart
 - \Rightarrow Is this large or small?
 - CMB model better constrained theoretically: Should it be preferred model?
 ⇒ Simplified dynamics of the K-matrix model has practical advantage
 - How do we treat multi-particle final states?

Basic resonance shapes are identical

An isolated resonance $-D_{15}(1675)$

Very inelastic, peak in Im T at 0.4 (unitary bound is 1.0) Low smooth background, no thresholds nearby Strong signal in $\pi N \rightarrow \pi \Delta$ also