

Outline

- ➤ Introduction to EIC
 - Highlights of EIC physics
 - > EIC accelerators proposals
- >Introduction to Deep Inelastic Scattering
 - > DIS kinematic
- >EIC detector design
 - > Tracking
 - Vertex
 - > Calorimeter
 - > Particle Identification detectors
 - > dE/dx
 - > Time of flight
 - > Cherenkov
 - > Transition radiation
 - > Muon detectors
 - > Far-forward electron
 - > Far-forward ion
 - > Luminosity
 - > Polarization
- > Detector simulation and reconstruction

Outline

- >Introduction to Electron Ion Collider
 - > Highlights of EIC physics
 - > US based EIC accelerators proposals
- >Introduction to Deep Inelastic Scattering
 - > DIS kinematic
- >FTC detector design
 - Tracking
 - > Vertex
 - Calorimeter
 - Muon detectors
 - > Particle Identification detectors
 - > dE/dx
 - > Time of flight
 - > Cherenkov
 - > Transition radiation
- > Detector simulation and reconstruction
- ➤ Conclusions

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Outline

- > Motivation
- > Calorimeter:
 - > Electromagnetic calorimeter (EMCAL)
 - > Hadronic calorimeter (HCAL)
 - > Particle flow calorimeter
- > Muon detectors
- >Far-Forward

4

Motivation

✓ In nuclear and particle physics calorimeter refers to energy measurements of particles.

We need 1kCal to change a temperature on 1 °C for 1 liter of water

1kCal ~ 1000·2.61·10¹⁹ eV ~ 2.61 · 10¹⁰ TeV

✓ In calorimeters the process of energy measurements is destructive: we must completely stop the particle in our detectors to measure its full energy:

Unlike, for example, tracking chambers (straw, TPC, silicon, etc), the particles are no longer available for detection once they path through a calorimeter.

With just few exceptions: muons and neutrinos penetrate through with a minimal interactions

- ⇒ Calorimeter is the outermost detector
- ✓ At EIC we would like to provide close to 100% acceptance detector

Yulia Furletova ⁵

Motivation

- ✓ Calorimeter measure charged + neutral particles
 - > Scattered electron
 - > Charged particles (electrons, hadrons)
 - > Neutral particles (gammas, neutral hadrons)
 - > Group of collimated particles moving into the same direction (Jets)

Motivation

- √ Why do we need a calorimeter ?
 - \checkmark Use momentum measurements for charged particles: $E^2 = (p^2 + m^2)$
 - > Need to measure precise PID (or mass): not always possible.
 - > Need to measure momentum precise: not always possible.
 - * Momentum measurements are getting worse with increase of particle momenta ($\frac{\Delta p}{n}$ ~ p)
 - ***** BUT, Calorimeter measurements are getting better with increase of the energy $(\frac{\Delta E}{F} \sim \frac{1}{\sqrt{F}})$
 - ✓ Need to measure neutral particles! Calorimeter is the ONLY detector for them.

Electromagnetic cascade

As electron or photon (high energy >1GeV) enters a thick absorber it produces a cascade of secondary electrons and photons.

Main processes: bremsstrahlung and pair production.

As the depth increases the number of secondary particles increases, but their mean energy decreases.

When the energies became below *critical energy* the multiplication process stops and energy via the processes of ionisation and excitation.

Calorimeter shower

Radiation length, X_0 , is the distance in which, on average:

- > an electron loses all but 1/e of its energy: [1 1/e] = 63%
- > photon has a pair conversion probability of 7/9.

Lead absorbers in cloud chamber

- \checkmark 2ⁿ particles after n [X₀]
- \checkmark each with energy $E_0/2^n$
- ✓ Stops if E < critical energy E_c
- ✓ Number of particles $N = E/E_c$
- \checkmark Maximum at $n_{max} \sim \ln (E_0/E_c)$

- Location of shower maximum
- Transverse shower distribution
- Longitudinal shower distribution

Longitudinal shower distribution increases only logarithmically with the primary energy of the incident particle, i.e. calorimeters can be compact $L\sim \ln(E_0/E_c)$

Calorimeter shower

Some examples:

```
\begin{array}{ll} E_c = & 10 \text{MeV} \\ E_0 = & 1 \text{ GeV}: \\ & n_{\text{max}} = & \ln(100) = 4.5 \text{ and N} = 2^{n(\text{max})} = & 100 \\ E_0 = & 100 \text{ GeV}: \\ & n_{\text{max}} = & \ln(10000) = 9.2 \text{ and N} = 2^{n(\text{max})} = & 10000 \end{array}
```

	LiAr	Fe	Pb	W	U
X ₀ (cm)	14	1.76	0.56	0.35	0.32

Yulia Furletova

Lead absorbers in cloud chamber

For 100 GeV electron: 16 cm Fe or 5 cm Pb

Hadronic cascade (shower)

Similar to EM shower development, but more complex due to different processes involved:

- > Includes Electromagnetic shower
- And Hadronic shower (the strong interaction with detector material):
 - Generation of pions, kaons, etc...
 - Breaking up nuclei
 - Creation of nun-detectable particles(neutrons, neutrinos, soft photons) => large uncetranties in Esum
 - Large fluctuations.
- Different scale: hadronic interaction length determinates depth of the shower

The average distance between interactions $\lambda \sim L/N_{int} \sim 1/(\rho \sigma_{el})$

EM vs Hadronic cascade

Material dependency:

• EM: $X_0 \sim \frac{A}{Z^2}$ • HAD: $\lambda_{int} \sim A^{1/3}$

 $\Rightarrow \lambda_{int} \gg X_0$

Number of particles ~ In(E)

Typical size for hadronic shower (95%):

 \triangleright Longitudinal: (6-9) λ_{int}

 \triangleright Transverse: 1. λ_{int}

	LiAr	Fe	Pb	W	U
X_0 (cm) radiation length	14	1.76	0.56	0.35	0.32
λ (cm) interaction length	86	16.8	17.6	9.95	11.03

12

Energy resolution

In ideal case: $E \sim N$, $\sigma(E) \sim \sqrt{N} \sim \sqrt{E}$

In real life:

$$\sigma(\mathsf{E}) \sim \mathsf{a} \sqrt{\mathsf{E}} \oplus \mathsf{b} \cdot \mathsf{E} \oplus \mathsf{c}$$

$$\sigma(E) \sim a \sqrt{E} \oplus b \cdot E \oplus c$$
 or $\left(\frac{\sigma(E)}{E} \sim \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}\right)$

a - stochastic term:

intrinsic statistical shower fluctuations, sampling fluctuations

b - constant term:

inhomogeneities, imperfections in construction (dimensional variations, etc.), non-linearity of readout electronics, energy lost in dead material, etc

c- noise term:

readout electronic noise

Types of calorimeter

Sampling calorimeter:

Layers of absorber alternate with active(sensitive) detector volume (sandwich, shashlik, accordion structures)

Absorber: Pb, etc Sensitive (solid or liquid): Si, scintillator, LiAr

Homogeneous calorimeter

Monolithic material, serves as both absorber and detector material

Liquid: Xe, Kr

Dense crystals: glass, crystals PbWO₄

Sampling EM calorimeters

- •Shashlyk (scintillators + absorber)
- -WLS fibers for readout
- -Sci-fiber EM(SPACAL):
- •Compact W-scifi calorimeter, developed at UCLA
- •Sc. Fibers -SCSF78 Ø 0.47 mm, Spacing 1 mm center-to-center
- •Resolution ~12%/JE
- •On-going EIC R&D

PbWO₄ Crystal EM Calorimeter

Tungsten glass (CMS or PANDA)

(1-3) %/\(\int \)(GeV) + 1%

Compactness, easy to assemble

•Time resolution: <2 ns

Cluster threshold: 10 MeV

Produced at two places (China, Russia)

• For CMS it took 10 years to grow all crystals !!!

Yulia Furletova

PANDA endcup

CMS EMCAL facts:

•crystals each weigh 1.5kg (but with a volume ~ small coffee cup)

contains nearly80,000 crystals (for each took two days to grow)

Other EM Calorimeter technology

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/\mathrm{E}^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_{0}$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	E 1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_{0}$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E} \oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

EMCAL at EIC requirements

18

Scattered electron

EMCAL requirements

Electrons:

- -scattered electron
- -secondary electrons (decay products (J/ψ))

Kinematic reconstruction a) Electron method uses information from scattered electron ONLY:

$$Q_{\text{EM}}^{2} = 2E_{e}E_{e'} (1 + \cos \theta_{e'}),$$

$$y_{\text{EM}} = 1 - \frac{E_{e'}}{2E_{e}} (1 - \cos \theta_{e'}),$$

$$x = \frac{Q^{2}}{4E_{e}E_{\text{ion}}} \frac{1}{y}$$

Linear dependence on E_{e'} of the Q²

Gammas

- High granularity (azimuthal asymmetry)
- Background from π^0 -> $\gamma\gamma$ => high granularity
- \checkmark 4 π coverage for EM calorimeter for electrons and gammas
- ✓ High performance EM calorimeter is need in the electron endcap where scattered electron has low energy
- ✓ High granularity in the forward going direction
- √ very good e-identification
- ✓ Kinematic variables (x,Q^2) depend on $E_{e'}$

EMCAL at JLEIC

Is it enough to have only EM Calorimeter?

Hadronic final state

- 1. Scattered electron
- 2. Particle associated with initial Ion
- 3. Particle associated with struck quark

c) Sigma method

$$y_{e\Sigma} = \frac{\Sigma_h \left(E_h - p_{z,h} \right)}{E - P_z},$$
$$Q_{e\Sigma}^2 = \frac{\left(E_{e'} \sin \theta_{e'} \right)^2}{1 - v}.$$

Note: Does not depend on initial electron beam energy, less influenced by a initial state radiation

BUT... the Electron Method for kinematic reconstruction:

- Linear dependence on $E_{e'}$ of the Q^2
- This method could NOT be used for y < 0.1

All other methods require measurements of hadronic final states (particle associated with struck quark), here are just two examples

b) Double angle method

$$Q_{\mathrm{DA}}^{2} = \frac{4E_{e}^{2} \sin \gamma_{h} \left(1 + \cos \theta_{e'}\right)}{\sin \gamma_{h} + \sin \theta_{e'} - \sin \left(\theta_{e'} + \gamma_{h}\right)},$$
$$y_{\mathrm{DA}} = \frac{\sin \theta_{e'} \left(1 - \cos \gamma_{h}\right)}{\sin \gamma_{h} + \sin \theta_{e'} - \sin \left(\theta_{e'} + \gamma_{h}\right)},$$

Note: Does not require measurements of scattered electron energy, but require a good knowledge of hadronic final state:

$$\cos \gamma_h = \frac{P_{T,h}^2 - \left(\sum_h (E_h - p_{z,h})\right)^2}{P_{T,h}^2 + \left(\sum_h (E_h - p_{z,h})\right)^2}$$

Charged current DIS

DIS kinematic could be reconstructed from hadronic final state only

d) Jacquet -Blondel method

$$y_{\rm JB} = \frac{1}{2E_e} \sum_{h} (E_h - p_{z,h}),$$

$$Q_{\rm JB}^2 = \frac{1}{1 - y_{\rm JB}} \left(\left(\sum_{h} p_{x,h} \right)^2 + \left(\sum_{h} p_{y,h} \right)^2 \right).$$

Note: poor resolution compare to other methods, but this is the only method for Charged Current DIS events!!!

DIS kinematic: Charged Current

25

HCAL at EIC requirements

Struck quark

Isolines of thestruck quark

- \triangleright need 4π coverage
- Electron endcap : mostly low energy <10GeV</p>
- Hadron end-cap and Far-forward hadron: high energy > 50GeV

Yulia Furletova

20

HCAL calorimeters

Hadronic calorimeters are usually sampling calorimeters Has two components: Electromagnetic and Hadronic

The active medium made of similar material as in EMCAL:

→ Scintillator (light), gas (ionization chambers, wired chambers), silicon (solid state detectors), etc

The passive medium is made of materials with longer interaction length $\lambda_{\mathcal{I}}$

→ Iron, uranium, etc

$$\frac{\sigma(E)}{E} \sim \frac{50\% - 100\%}{\sqrt{E}}$$

Uranium Calorimeter at ZEUS: $\sigma_E/E \sim 35\%/\sqrt{E}$

16 scintillator 4 mm thick plates (active material)
Interleaved with 50 mm thick plates of brass

m interacting in HCAL only

π interacting in ECAL or HCAL

dynamic weighting

CMS TB '04

no weighting
 passive weighting

EM fraction in hadronic shower

- $\pi 0, \eta$ production: all energy deposited via EM processes
- f_{EM} = fraction of hadron energy deposited via EM processes
 - > Generally, f_{EM} increases with energy
- f_{had} = the strong interaction fraction
- Smaller calorimeter response to non-EM components of hadron showers than to EM components
- Need to compensate for the invisible energy (Lost nuclear binding energy, neutrino energy, Slow neutrons)
- $e/h \neq 1$ $\frac{e}{h} = \frac{1 f_{em}(E)}{\pi/e(E) f_{em}(E)}$

Compensation e/h = 1 Undercompensation e/h > 1 Overcompensation e/h < 1

First uranium calorimeter by Fabjan and Willis: e/h ~ 1.1-1.2 hadro(nic shower increases due to more nuclear reactions)

ZEUS calorimeter

Neutral current DIS

Charged current DIS

Sampling structure of the towers

Depleted Uranium alloy (98.1% U238, 1.7% Nb, 0.2% U235)

Longitudinal length of EMC is $1\lambda_{int} = 25X_0$. (Almost complete containment of EM showers)

containment of EM showers)

Longitudinal length of FCAL 6-7 λ_{int} (Full containment of

hadronic showers)

electrons:
$$\frac{\sigma}{E} = \frac{18\%}{\sqrt{E}} \oplus 2\%$$
hadrons: $\frac{\sigma}{E} = \frac{35\%}{\sqrt{E}} \oplus 2\%$

Neural network based electron identification

EIC Central detector overview

Modular design of the central detector

Calorimeter vs tracking

For charged particle one could choose the better method (E or p)

Jets

ask Google:

Jets for theorists: partons: gluons, quarks

Jets for experimentalists:

number of collimated tracks which leaves energy in a calorimeter

Jet is a bunch of collimated particles (mostly hadrons), moving into direction of initial parton (quark, gluon)

How well do we understand this transition?

Jets at EIC

1) Jets evolution and dynamics (jet == struck quark)

2) Jets as a probe of partonic initial state

- 3) Jets in medium (cold nuclear matter)
 - ✓ energy loss, quenching
 - √ broadening
 - ✓ multiple-scattering.

Determination of α_s from the inclusive jet cross section in DIS

ZEUS/HERA

- High energy resolution calorimeter
- High granularity to study subjet structure

Jet Reconstruction

Jet is an object defined by an algorithm:

Two "categories" of jet algorithms:

- 1) Cone jets (Cone, SisCone, MidCone) traditionally for hadron colliders
- -draw cone radius R around starting point (calorimeter towers with energy above threshold, "seeds").
 - -iterate position of cone until "stable" position is found
- 2) Clustering: sequential recombination (Jade, kT, anti-kT) traditionally e+e-,ep
- uses the knowledge that final state particles in a jet are largely collinear ie. have small transverse momentum between their constituent particles.
 - algorithm begins to create a list of the momentum-space distance....

 k_{τ} algorithms (compared to cone algorithms) have the tendency to combine more energy into jets.

Jet is an object defined by an algorithm. If parameters are right it may approximate a parton. Physics results (particle discovery, masses, PDFs, coupling) should be independent of a choice of jet definition.

M. Zieliński kT jet Cone jet

Particle flow calorimeters

In a typical jet : 60 % of jet energy in charged hadrons 30 % in photons (mainly from $\pi 0 -> \gamma \gamma$) 10 % in neutral hadrons (mainly n, K_{l})

<u>Traditional calorimetric approach:</u>

- -Measure all components of jet energy in FCAL/HCAL
- -70% of energy measured in HCAL with poor resolution : σ_E /E~60%/ \sqrt{E}

$$E_{JET}$$
=EMCAL+HCAL

Particle Flow Calorimetry:

- -charged particles measured in tracker (essentially perfectly)
- -Photons in ECAL: : σ_E /E~2-10%/ \sqrt{E} -Neutral hadrons (ONLY) in HCAL =>

Only 10 % of jet energy from HCAL

$$E_{JET} = E_{track} + E_{\gamma} + E_{n}$$

much improved resolution!!!

Jose Repond

TOPSIDE (EIC detector concept)

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]		
Charged	65 %	Tracker	Negligible 7		
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	18	%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}		701 12
Confusion	If goal is to achieve a resolution of $30\%/\sqrt{E} \rightarrow$		≤ 0.24 ² E _{jet}		

Factor of 2 better then previously achieved

- All silicon tracking
- Imaging calorimetry
- Ultra-fast silicon

Of the order of 55 –80 M readout channels for EMCAL and HCAL:

Silicon pixels with an area of 0.25 cm²
Total area about 1,400 m²

Needed for 5D Concept (Measure E, x, y, z, t)

Implement in calorimeter and tracker for Particle

ID $(\pi-K-p \text{ separation})$

Resolution of 10 ps \rightarrow separation up to \sim 7 GeV/c

Current status:

Best timing resolution about 27 ps

Reconstruction

Sub-jets structure

Jet identification (q vs g vs heavy-q)

Tau-Jets

Heavy quark jets

Heavy quark jets

Jets initiated by a heavy quark! Lifetime methods:

Exploit displaced vertices and/or tracks, \overline{A} both b-hadron or c-hadron decays (or subsequent decay)

lepton tagging: μ or e inside the jet!

- Reconstruct jet
- Reconstruct vtx
- Decay length projection on jet axis
- (-) if in wrong semisphere
- Decay length significance S=d/ δ d
- M_{vxt} (assuming all tracks are charged pions)
- · Subtract LF from wrong sign
- S in Mvtx bin

Calorimeter for EIC

Hermiticity;

- Very good energy resolution;
- ° Good position resolution;
- ° Fast response to avoid pile-up;
- Good timing resolution;
- Wide dynamical range;
- Good calibration precision;
- Uniform response;
- Good electron hadron separation;

Particle's impact position is often estimated by using shower's center of gravity:

$$x = \frac{\sum_{i} x_{i} w(E_{i})}{\sum_{i} w(E_{i})}$$

Far-forward detection

Trigger

Sources of background

- 1. Beam related
 - synchrotron radiation
 - proton-beam background (vacuum)
 - Muons and neutrons
- 2. Physics related:
 - Low-Q² photoproduction

	Bunch crossing rate	Physics rate	Total rate background
ZEUS	10.4 MHz (96ns)	1-10 kHz	100 kHz
EIC	476 MHz (2ns)		3

Storage speed limitation Large improvements in FPGA size, speed and link bandwidth ZEUS:

A fast Calorimeter response is required for a trigger decision.

Trigger

ZEUS:

Storage speed limitation is an issue for all particle physics experiments Large improvements in FPGA size, speed and link bandwidth

10GB/s -> reduced to -> 100 MB/s

Calorimeter for particle identification

Electrons: track pointing to cluster in EMCAL Gammas: no track but cluster in EMCAL Neutral hadrons: no tracks, energy in HCAL

Neutrino: missing energy (E_T, p_T)

Muon: track, minimum energy in CAL

Charged hadrons: track+ energy in HCAL

(ratio EMCAL/HCAL)

<u>Problems (misidentification):</u>

e/hadron separation: hadrons could develop shower in EMCAL $\pi^0 \rightarrow \gamma \gamma$: cluster in EMCAL Not possible to separate charged hadrons (π, K, p)

Yulia Furletova 43

Muon chambers

Muon identification:

- -Identification
- -Energy/momentum measurements

For high energy (above a few GeV), muons identification is based on **low rate of interaction** of muons with matter...

If charged particle penetrates large amount of absorbers with minor energy losses and small angular displacement -- such particle is considered a muon

Muonlifetime is 2.2 msec (1GeV -> 7 km)

Hadrons create shower in absorber. If the absorber is too thin the shower can leak through, and such charged particle are detector after the absorber.

CMS- muon chambers

Fva Halkiadakis

Muon chambers are the outermost layer, but measurements are made combined with inner tracker.

Larger volume (Drift Tubes)

Muon identification

ZEUS/HERA data, exclusive J/ψ (Robert Ciesielsky) 250 number of events **(b)** (a) 200 200 **150 150** 100 100 **50 50** 3.5 2.5 3 2.5 M(ee) (GeV) **M**(μμ) (**GeV**)

Br $(J/\psi -> \mu + \mu -) \sim 6\%$

- Much cleaner sample from muon decay channel
- \succ E_{emcal}/E_{tot} , for muons Min energy in EMCAL and HCAL
- > p/E
- In addition (R&D needed):
 - > Need instrumentation: muon chambers.
 - > dE/dx, cluster counting

EIC Central detector overview

Modular design of the central detector

Yulia Furletova 47

Summary

Goals:

- → What kind of physics we would like to measure?
- → What are the typical particle energies (dynamic range)?
- → Cost?

Find a proper material:

- → fully contain the particle in the calorimeter (depth)
- → minimize fluctuations (better energy measurement)
- → low noise
- → minimize dead area
- → fast response
- -> radiation hard (especially near beampipe)

Coverage: 4π solid angle

Backup

49