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Some Literature

• Review Literature on TMDs (list not exhaustive)

– Barone, Drago, Ratcliffe, Transverse polarisation of quarks in hadrons,

hep-ph/0104283

– D’Alesio, Murgia, Azimuthal and single-spin asymmetries in hard scattering

processes, arXiv:0712.4328

– Aidala, Bass, Hasch, Mallot, The spin structure of the nucleon, arXiv:1209.2803

– Angeles-Martinez et al, Transverse momentum dependent (TMD) parton

distribution functions: status and prospects, arXiv:1507.05267

– Grosse Perdek., Yuan, Transverse spin structure of the nucleon, arXiv:1510.06783

– Various articles on 3D parton structure of hadrons, Eur. Phys. J A52 (2016)

– Metz, Vossen, Parton fragmentation functions, arXiv:1607.02521

• Literature on TMDs at an EIC

– Boer et al, Report on the joint BNL/INT/JLab Program on Gluons and the quark

sea at high energies: distributions, polarization, tomography, arXiv:1108.1713

– Accardi et al, Electron Ion Collider: The next QCD Frontier — Understanding

the glue that binds us all, arXiv:1212.1701

– 2015 Long Range Plan for Nuclear Science, Reaching for the Horizon
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Lecture 1: Definition and Overview of TMDs

• Motivation

• The basic object in field theory: quark-quark correlator

• Integrated parton distribution functions (PDFs) of quarks

• Transverse momentum dependent (TMD) PDFs of quarks

• TMD fragmentation functions (FFs) of quarks

• TMD-PDFs of gluons
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Why do we care about TMDs ?

• Partons do have (non-perturbative) transverse momentum
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+
k
− − ~k 2
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+
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⊥
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• Hierarchy in TMD parton model (situation is different at small x)

k
+ � k⊥ � k

−

• Rough estimate based on uncertainty relation

∆k⊥ ∼ 200 MeV → confined motion
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• Interest in 3-D rather than just 1-D parton structure

• TMDs contain important information about (non-perturbative) QCD dynamics

• TMDs appear naturally in QCD description of many high-energy scattering processes

• TMDs can give rise to new phenomena (e.g., single-spin asymmetries)

• TMDs allow one to study interesting new nontrivial pQCD aspects:

role of re-scattering of active partons, factorization, universality, evolution, ...

• etc.
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• Research on TMDs is supported by funding agencies

– DOE-funded Topical Collaboration in Nuclear Theory

– 22 senior investigators, 13 institutions

– support for 2 tenure-track faculty members

– junior investigators

– affiliated members
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(Unintegrated) Quark-Quark Correlator

1. Definition of qq-correlator (suppressing some subtleties)

• Graphical representation of Φ
q
ij(k, P, S)

• Appears in QCD description of many processes (before kinematical approximations)

• Field-theoretic definition

Φ
q
ij(k, P, S) =

∫
d

4
z

(2π)
4
e
ik · z 〈P, S|ψ̄qj(−z

2)W[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

– spin 4-vector (can be obtained from boosting rest-frame spin vector)

S =

(
ΛP

+

M
,−

ΛP
−

M
, ~S⊥

)
S

2
= −Λ

2 − ~S
2
⊥ = −1 P ·S = 0

– gauge-link (Wilson line) ensures color gauge invariance of correlator

W[zi, zf ] = P exp

(
− ig

∫ zf

zi

dzµA
µ
a(z)Ta

)
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2. General form of qq-correlator

• Constraints

Φ
†
(k, P, S) = γ0 Φ(k, P, S) γ0 [hermiticity]

Φ(k, P, S) = γ0 Φ(k̄, P̄ ,−S̄) γ0 [parity]

Φ
∗
(k, P, S) = (−iγ5C) Φ(k̄, P̄ ,−S̄) (−iγ5C) [time-reversal]

– k̄
µ

= (k
0
,−~k), etc.

– C = iγ
2
γ0 − iγ5C = iγ

1
γ

3

– T-reversal constraint applies in this form only ifW neglected

• General form of Φ (neglecting S and direction ofW)

Φ(k, P, S) = MA1 + /PA2 + /k A3 + i
[/P , /k]

2M
A4 (∗)

Ai(k
2
, k ·P ) are real (due to hermiticity)

• Problems

– Problem 1: Derive hermiticity and parity constraints (use:Pψ(z)P†=γ0ψ(z̄))

– Problem 2: Show that (∗) is compatible with hermiticity and parity constraints

– Problem 3: Show that last term in (∗) not allowed if T-reversal constr. is applied
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3. Correlators for TMDs and PDFs

• qq-correlator for TMDs: integrate upon k
−

Φ
q
ij(x,

~k⊥, P, S) =

∫
dk
−

Φ
q
ij(k, P, S)

=

∫
dz
−
d

2
~z⊥

(2π)
3

e
ik · z 〈P, S|ψ̄qj(−z

2)WTMD[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

∣∣∣
z
+

=0

we have used ∫
dk
−
e
ik · z

= 2π δ(z
+
) exp(ik

+
z
− − i~k⊥ · ~z⊥)

• qq-correlator for PDFs: integrate (also) upon ~k⊥

Φ
q
ij(x, P, S) =

∫
d

2~k⊥Φ
q
ij(x,

~k⊥, P, S)

=

∫
dz
−

2π
e
ik · z 〈P, S|ψ̄qj(−z

2)WPDF[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

∣∣∣
z
+

=~z⊥=0

• Structure of Φ(k, P, S) also determines structure of TMD and PDF correlators
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4. Decomposition of qq-correlator into contributions of different twist

• Convenient defintion

Φ
q [Γ]

(k, P, S) ≡
1

2
Tr
[
Φ
q
(k, P, S)Γ

]
=

1

2
Φ
q
ij(k, P, S)Γji

=
1

2

∫
d

4
z

(2π)
4
e
ik · z 〈P, S|ψ̄q(−z

2) ΓW[−z
2,

z
2]ψ

q
(z2)|P, S〉

• Expansion of Φ
q

in basis of Dirac matrices

Φ
q

=
1

2
Φ
q [γ

+
]
γ
− −

1

2
Φ
q [γ

+
γ5]
γ
−
γ5 +

1

2
Φ
q [iσ

i+
γ5]
iσ

i−
γ5 + . . . (∗)

• Leading (working) twist if Γ carries one plus-index (for nucleon with large P
+

)

• Leading-twist terms dominate in observables

• Problem 4: Check whether (∗) is correct
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PDFs of Quarks

• Forward qq-correlator

Φ
q
ij(x, P, S) =

∫
dz
−

2π
e
ik · z 〈P, S|ψ̄qj(−z

2)WPDF[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

∣∣∣
z
+

=~z⊥=0

• Definition of leading-twist quark PDFs

f
q
1 (x) = Φ

q [γ
+

]
(x, P, S)

=

∫
dz
−

4π
e
ik · z 〈P, S|ψ̄q(−z

2) γ
+WPDF[−z

2,
z
2]ψ

q
(z2)|P, S〉

∣∣∣
z
+

=~z⊥=0

Λ g
q
1(x) = Φ

q [γ
+
γ5]

(x, P, S)

S
i
⊥ h

q
1(x) = Φ

q [iσ
i+
γ5]

(x, P, S)

• Interpretation as number densities using light-front quantization

• Density interpretation spoiled by QCD effects (radiative corrections)

• Dependence on renormalization scale (µ) has been suppressed
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• More on polarization dependence

– quarks with definite helicity/chirality

ψλ = Pλψ Pλ =
1

2
(1 + λγ5) λ = ± 1

ψ̄λ = ψ̄ P−λ P
2
λ = Pλ (∗)

– Problem 5: Verify the two relations in (∗)

– rewriting of operator for unpolarized distribution f1

ψ̄ γ
+
ψ = ψ̄ γ

+

[
1

2
(1 + γ5) +

1

2
(1− γ5)

]
ψ

= ψ̄
1

2
(1− γ5) γ

+ 1

2
(1 + γ5)ψ + ψ̄

1

2
(1 + γ5) γ

+ 1

2
(1− γ5)ψ

= ψ̄+ γ
+
ψ+ + ψ̄− γ

+
ψ−

→ f1 describes sum of two densities

– rewriting of operator for helicity distribution g1

ψ̄ γ
+
γ5ψ = ψ̄+ γ

+
ψ+− ψ̄− γ

+
ψ−

→ g1 describes difference of two densities (can become negative)
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– h1 describes difference of two densities for transverse quark polarization

iσ
i+
γ5 = γ

+
γ
i
γ5

Pi =
1

2
(1± γiγ5) projects on states with transverse polarization

• g1 and h1 can also be interpreted as strength of spin-spin correlations

λΦ
q [γ

+
γ5]

(x, P, S) = λΛ g
q
1(x)

s
i
⊥Φ

q [iσ
i+
γ5]

(x, P, S) = ~s⊥· ~S⊥ h
q
1(x)

• Overview

quark polarization

U L T

U f
q
1

L g
q
1

T h
q
1

– polarization of nucleon and

quark “aligned”

– h
q
1 is chiral-odd

→ decouples from many processes
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TMD-PDFs of Quarks

• TMD qq-correlator

Φ
q
ij(x,

~k⊥, P, S) =

∫
dz
−
d

2
~z⊥

(2π)
3

e
ik · z 〈P, S|ψ̄qj(−z

2)WTMD[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

∣∣∣
z
+

=0

• Definition of leading-twist quark TMD-PDFs (in Amsterdam notation)

(Mulders, Tangerman, 1995 / Boer, Mulders, 1997 / Bacchetta et al, 2006)

Φ
q [γ

+
]
(x,~k⊥) = f

q
1 −

ε
ij
⊥ k

i
⊥ S

j
⊥

M
f
⊥q
1T

λΦ
q [γ

+
γ5]

(x,~k⊥) = λΛ g
q
1 +

λ~k⊥· ~S⊥
M

g
q
1T

s
i
⊥Φ

q [iσ
i+
γ5]

(x,~k⊥) = ~s⊥· ~S⊥ h
q
1 +

Λ~k⊥·~s⊥
M

h
⊥q
1L −

ε
ij
⊥ k

i
⊥ s

j
⊥

M
h
⊥q
1

+
1

2M
2

(
2~k⊥·~s⊥ ~k⊥· ~S⊥ − ~k

2
⊥ ~s⊥· ~S⊥

)
h
⊥q
1T

– TMDs depend on x and ~k
2
⊥ → forward limit is readily recovered

– improved definition nedeed (rapidity divergence, double counting in factorization)

– dependence on two scales (µ , ζ) has been suppressed
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• TMD-PDFs of quarks have names

f
⊥q
1T : Sivers function (Sivers, 1989)

h
⊥q
1 : Boer-Mulders function (Boer, Mulders, 1997)

g
q
1T h

⊥q
1L : worm-gear functions (polarization of hadron and quark perpendicular)

h
⊥q
1T : pretzelosity (quadrupole pattern of pre-factor)

• Sivers function: a closer look

– density of unpolarized quarks in (transversely) polarized nucleon

Φ
q [γ

+
]
(x,~k⊥, P, S) = f

q
1 (x,~k

2
⊥)−

(~k⊥× ~S⊥) · P̂
M

f
⊥q
1T (x,~k

2
⊥)

– f
⊥
1T describes difference of two densities for transverse nucleon polarization

– f
⊥
1T can generate transverse single-spin asymmetries (SSAs) in scattering processes

– observed large transverse SSAs were motivation for Sivers to explore this effect
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• Overview

quark polarization

U L T

U f
q
1 h

⊥q
1

L g
q
1 h

⊥q
1L

T f
⊥q
1T g

q
1T h

q
1 h

⊥q
1T

– 4 TMDs associated with dipole structure: f
⊥q
1T h

⊥q
1 g

q
1T h

⊥q
1L

– 1 TMD associated with quadrupole structure: h
⊥q
1T

– 2 (näıve) time-reversal odd (T-odd) TMD-PDFs: f
⊥q
1T h

⊥q
1

(T-reversal forbids the coresponding correlations unless there is non-trivial

imaginary part at amplitude level)

– no effect for U/L and L/U polarizations due to parity invariance
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• “Stamp collecting”? ... maybe ... but we are in good company

– periodic table of elements

don’t forget the isotopes ...

– (supersymmetric) extensions of the Standard Model

– materials science

– etc.
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TMD-FFs of Quarks

• Graphical representation of qq-correlator ∆
q
ij(k, Ph, Sh) for fragmentation

• Field-theoretic definition of unintegrated qq-correlator for fragmentation into hadron h

∆
h/q
ij (k, Ph, Sh) =

∑
X

∫
d

4
z

(2π)
4
e
ik · z 〈0|W[−z

2,
z
2]ψ

q
i (
z
2) |Ph, Sh, X〉

× 〈Ph, Sh, X|ψ̄
q
j(−z

2)|0〉

– qq-correlator for TMD-FFs obtained by integration upon small light-cone

momentum of quark

– definition of TMD-FFs basically analogous to case of TMD-PDFs
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• Overview (in Amsterdam notation)

quark polarization

U L T

U D
q
1 H

⊥q
1

L G
q
1 H

⊥q
1L

T D
⊥q
1T G

q
1T H

q
1 H

⊥q
1T

– interpretation like for TMD-PDFs, but role of parton and hadron interchanged

– only two functions matter for unpolarized hadrons: D
q
1 H

⊥q
1

– H
⊥q
1 : Collins (fragmentation) function (Collins, 1992)

– D
⊥q
1T : Sivers-type / polarizing fragmentation function

– 2 (näıve) time-reversal odd (T-odd) TMD-FFs: D
⊥q
1T H

⊥q
1
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TMD-PDFs of Gluons

• Graphical representation of gg-correlator Φ
g [ij]

(k, P, S)

• Field-theoretic definition of unintegrated gg-correlator (leading twist only)

Φ
g [ij]

(k, P, S) =

∫
d

4
z

(2π)
4
e
ik · z 〈P, S|F+j

a (−z
2)Wab[−z

2,
z
2]F

+i
b (z2)|P, S〉

– (gauge-invariant) operator contains components of gluon field strength tensor F
µν
a ,

with maximum amount of plus-indices (leading twist)

– different combinations of indices i, j describe densities for unpolarized,

circularly polarized and linearly polarized gluons
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• Overview (in Amsterdam notation) (Mulders, Rodrigues, 2000 / Meissner, Metz, Goeke, 2007)

gluon polarization

U Circ Lin

U f
g
1 h

⊥g
1

L g
g
1 h

⊥g
1L

T f
⊥g
1T g

g
1T h

g
1 h

⊥g
1T

– only two functions matter for unpolarized target: f
g
1 h

⊥g
1

– f
⊥g
1T : gluon Sivers function

– h
⊥g
1 : sometimes called gluon Boer-Mulders function

– 4 (näıve) time-reversal odd (T-odd) TMD-PDFs: f
⊥g
1T h

⊥g
1L h

g
1 h

⊥g
1T

– also 8 leading-twist TMD-FFs for gluons (Mulders, Rodrigues, 2000)
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Lecture 2: Observables for TMDs

• Inclusive DIS with qq-correlator

• Semi-inclusive DIS

– kinematics

– model-independent form of cross section

– (generalized) parton model and TMDs

• Other processes

• Special case: direct sensitivity to transverse parton momenta

• Some elements of TMD factorization
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Inclusive DIS with qq-Correlator

• Process

`(l, λ`) +N(P, S)→ `(l
′
, λ
′
`) +X

• Handbag diagram

• Structure of cross section

dσ ∼ Lµν W
µν

• Leptonic tensor

L
µν

=
[
ū(l
′
, λ
′
`) γ

ν
u(l, λ`)

][
ū(l
′
, λ
′
`) γ

µ
u(l, λ`)

]∗
= 2

(
l
µ
l
′ν

+ l
′µ
l
ν − l · l′gµν

)
+ 2 i λ` ε

µνρσ
lρl
′
σ (∗)

– Problem 6: Derive the polarization-independent part of (∗)
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• Hadronic tensor (neglect mq from start; show only dependence on k in qq-correlator)

W
µν∼

∑
q

e
2
q

∫
d

4
k Tr

[
Φ
q
(k) γ

µ
(/k + /q) γ

ν
]
δ
(
(k + q)

2)
=
∑
q

e
2
q

∫
d

4
kΦ

q [γ
+

]
(k)

1

2
Tr
[
γ
−
γ
µ

(/k + /q) γ
ν
]
δ
(
(k + q)

2)
+ . . .

=
∑
q

e
2
q

2

∫
d

4
kΦ

q [γ
+

]
(k) Tr

([
γ
−
γ
µ

(/k + /q) γ
ν
]
δ
(
(k + q)

2))∣∣∣∣
k
−

=~k⊥=0

+ . . .

=
∑
q

e
2
q

2

∫
dk

+
Φ
q [γ

+
]
(x) Tr

([
γ
−
γ
µ

(/k + /q) γ
ν
]
δ
(
(k + q)

2))∣∣∣∣
k
−

=~k⊥=0

=
∑
q

e
2
q

2

∫
dk

+

k
+

Φ
q [γ

+
]
(x)︸ ︷︷ ︸

f
q
1 (x)

Tr

([
/k γ

µ
(/k + /q) γ

ν
]
δ
(
(k + q)

2)︸ ︷︷ ︸
xB

Q
2 δ(x− xB)

)∣∣∣∣
k
−

=~k⊥=0

+ . . .

=
1

Q
2

∑
q

e
2
q

2
f
q
1 (xB) Tr

([
/k γ

µ
(/k + /q) γ

ν
])∣∣∣∣

k
+

=xBP
+
, k
−

=~k⊥=0

(∗)

– note the equivalence to calculation in “simple” parton model

– Problem 7: Repeat the steps leading to (∗)
– missing: gauge invariance of correlator/PDFs
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• Handbag diagram including re-scattering of quark

– including re-scattering graphs (to all orders) renders gauge-invariant correlator

Φ
q
ij(x, P, S) =

∫
dz
−

2π
e
ik · z 〈P, S|ψ̄qj(−z

2)WPDF[−z
2,

z
2]ψ

q
i (
z
2)|P, S〉

∣∣∣
z
+

=~z⊥=0

– in other words: WPDF generated by final-state interaction (FSI) of active quark

– path of Wilson line is straight line (consequence of keeping leading order terms only)
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Semi-Inclusive DIS

• Process

`(l, λ`) +N(P, S)→ `(l
′
, λ
′
`) + h(Ph, Sh) +X

• 6 independent kinematical variables

xB =
Q

2

2P · q
Q

2
φS zh =

P ·Ph
P · q

Ph⊥ = |~Ph⊥| φh

y =
P · q
P · l

≈
Q

2

xB S
not independent

(figure from Bacchetta et al, hep-ph/0611265)
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• Model-independent form of cross section (in notation of hep-ph/0611265)

dσ

dxB dy dφS dzh dφh dP
2
h⊥
∼
{(

1− y + 1
2y

2)
FUU,T + (1− y) cos(2φh)F

cos 2φh
UU

+ Λ (1− y) sin(2φh)F
sin 2φh
UL + λ` Λ y

(
1− 1

2y
)
FLL

+ |~S⊥|
(
1− y + 1

2y
2)

sin(φh − φS)F
sin(φh−φS)

UT,T

+ |~S⊥|
(
1− y) sin(φh + φS)F

sin(φh+φS)

UT

+ |~S⊥|
(
1− y) sin(3φh − φS)F

sin(3φh−φS)

UT

+ λ` |~S⊥| y
(
1− 1

2y
)

cos(φh − φS)F
cos(φh−φS)

LT + 10 additional terms

}

– structure functions depend on 4 variables:

Fi = Fi(xB, zh, P
2
h⊥, Q

2
)

– at low Ph⊥, leading contribution to dσ given by 8 listed structure functions
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• Feynman diagram at tree level

dσ ∼ dσ̂pert ⊗ Φ⊗∆

– factorization formula depends on kinematical situation:

1. cross section integrated upon Ph⊥

2. cross section differential in Ph⊥, and Ph⊥ ∼ Q
3. cross section differential in Ph⊥, and Ph⊥ � Q→ realm of TMDs

– full description of differential cross section from small to large Ph⊥
still area of active research (see, e.g., Collins et al, arXiv:1605.00671)

28



• Hadronic tensor at tree level

W
µν ∼

∑
q

e
2
q

∫
d

4
k d

4
p δ

(4)
(k + q − p) Tr

[
Φ
q
(k) γ

µ
∆
q
(p) γ

ν
]

– consider P
+

and P
−
h large, as well as k

+
= xP

+
and P

−
h = zp

−

– consider frame with ~Ph⊥ = 0, and small ~q⊥ 6= 0

– neglect small light-cone components of parton momenta k
−

and p
+

in delta-function

(approximation for TMD parton model)

W
µν ∼

2 xB zh

Q
2

∑
q

e
2
q

∫
d

2~k⊥ d
2
~p⊥ δ

(2)
(~k⊥ + ~q⊥ − ~p⊥)

×Tr
[
Φ
q
(xB, ~k⊥) γ

µ
∆
q
(zh, ~p⊥) γ

ν
]

(∗)

– express Φ
q

and ∆
q

in terms of TMD-PDFs and TMD-FFs, respectively

– contract with leptonic tensor L
µν

– compare with model-independent form of cross section to find tree-level results

for structure functions Fi

– Problem 8: Check whether (∗) is correct
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• Structure functions at tree level (e.g., hep-ph/0611265)

FUU,T = xB

∑
q

e
2
q

∫
d

2~k⊥ d
2
~p⊥ δ

(2)
(~k⊥ + ~q⊥ − ~p⊥) f

q
1 (xB, ~k

2
⊥)D

q
1(zh, ~p

2
⊥)

F
cos 2φh
UU ∼ h

⊥
1 ⊗H

⊥
1

F
sin 2φh
UL ∼ h

⊥
1L ⊗H

⊥
1

FLL ∼ g1 ⊗D1

F
sin(φh−φS)

UT,T ∼ f
⊥
1T ⊗D1 [Sivers effect]

F
sin(φh+φS)

UT ∼ h1 ⊗H
⊥
1 [Collins effect]

F
sin(3φh−φS)

UT ∼ h
⊥
1T ⊗H

⊥
1

F
cos(φh−φS)

LT ∼ g1T ⊗D1

– transverse parton momenta of TMD-PDFs and TMD-FFs are convoluted

– except for FUU,T expressions are symbolic; in most cases convolutions

contain additional powers of transverse parton momenta

– all 8 TMD-PDFs can be studied

– all 8 structure functions have been measured
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Other Processes

1. Drell-Yan process: h1 + h2 → `
+

+ `
−

+X

• Feynman diagram at tree level

• Hadronic tensor at tree level, for low ~q⊥ of gauge boson

W
µν ∼

∑
q

e
2
q

∫
d

2~ka⊥ d
2~kb⊥ δ

(2)
(~ka⊥ + ~kb⊥ − ~q⊥)

×Tr
[
Φ
q
(xa, ~ka⊥) γ

µ
Φ
q̄
(xb, ~kb⊥) γ

ν
]

– sensitivity to “product” of two TMD-PDFs

– transverse parton momenta are convoluted

– longitudinal momentum fractions xa and xb fixed by kinematics of reaction

• 48 structure functions; cross checks possible for various TMDs

(Arnold, Metz, Schlegel, 2008)
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2. Electron-positron annihilation: e
+

+ e
− → h1 + h2 +X

• Feynman diagram at tree level

• Hadronic tensor at tree level, for low ~q⊥ of gauge boson

W
µν ∼

∑
q

e
2
q

∫
d

2
~pa⊥ d

2
~pb⊥ δ

(2)
(~pa⊥ + ~pb⊥ − ~q⊥)

×Tr
[
∆
q
(za, ~pa⊥) γ

µ
∆
q̄
(zb, ~pb⊥) γ

ν
]

– sensitivity to “product” of two TMD-FFs

– transverse parton momenta are convoluted

– longitudinal momentum fractions za and zb fixed by kinematics of reaction
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3. Some additional processes

(a) `N → ` jet jetX `N → ` J/ψX

(b) p p→ γ γ X p p→ γ jetX pp→ jet jetX

(c) p p→ (h jet)X

(d) p p→ J/ψX p p→ ηcX pp→ HiggsX

(e) pA-collisions

(f) etc.

• Very rich phenomenology

• Status of TMD factorization for additional processes:

– holds in some cases (according to current knowledge)

– breaks down in some cases

– unclear in some cases (further studies needed)→ active research area
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Direct Sensitivity to Transverse Parton Momenta

1. Jet production in DIS: `+N → `+ jet +X

• Feynman diagram at tree level

• Main features:

– transverse momentum ~k⊥ determined by jet transverse momentum ~Pj⊥

– same model-independent structure of cross section as for semi-inclusive DIS

– example: unpolarized structure function

FUU,T = xB

∑
q

e
2
q f

q
1 (xB, P

2
j⊥)

– important challenge: measurement of ~Pj⊥ has uncertainty (on the order of

typical intrinsic transverse parton momenta)
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2. Measurement of hadrons inside jets, e.g.: `+N → `+ (h jet) +X

• Feynman diagram at tree level

• Main features

– particularly suitable to study TMD-FFs

– jet can have large transverse momentum

– has been exploited in proton-proton collisions at RHIC (for Collins effect)

(STAR, arXiv:1708.07080)

35



Elements of TMD Factorization

1. Semi-inclusive DIS at tree level (Ralston, Soper, 1979)

• Feynman diagram for cross section

– generalized parton model

– no gluon radiation

• Expression for unpolarized structure function (suppressing flavor labels)

FUU,T ∼ HLO︸︷︷︸
from γ

∗
q → q

∫
d

2~k⊥ d
2
~p⊥ δ

(2)
(~k⊥ + ~q⊥ − ~p⊥) f1(xB, ~k

2
⊥)D1(zh, ~p

2
⊥)

• TMD-PDFs and TMD-FFs not gauge invariant

f1(x,~k
2
⊥) =

∫
dz
−
d

2
~z⊥

2 (2π)
3
e
ik · z 〈P, S|ψ̄(−z

2) γ
+
ψ(

z
2)|P, S〉

∣∣∣
z
+

=0
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2. Semi-inclusive DIS at tree level, but gauge invariant

(... / Belitsky, Ji, Yuan, 2002 / Boer, Mulders, Pijlman, 2003 / ... )

• Sample Feynman diagram for cross section

– leading region of loop momentum

l ∼ Q
(
1, λ

2
, λ
)

λ ∼ m/Q small

• Expression for unpolarized structure function

FUU,T ∼ HLO

∫
d

2~k⊥ d
2
~p⊥ δ

(2)
(~k⊥ + ~q⊥ − ~p⊥) f1(xB, ~k

2
⊥)D1(zh, ~p

2
⊥)

• TMD-PDFs and TMD-FFs gauge invariant (include Wilson line)

• Complications: rapidity divergences, Wilson line self energies

→ under control, but requires 1st modification of definition of TMDs

(Collins, Soper, 1981 / Collins, Hautmann, 2000 / Cherednikov, Stefanis, 2007 / Collins 2011 /

Echevarria, Idilbi, Schimemi, 2011 / ...)
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• Path of Wilson line for TMD-PDFs

– TMD factorization leads to staple-like Wilson line

– in semi-inclusive DIS, Wilson line for TMD-PDFs is future-pointing

(FSI of active parton)

– Wilson line reduces to straight line upon integration over ~k⊥

• In semi-inclusive DIS, Wilson line for TMD-FFs, a priori, is past-pointing

(ISI of active parton)

• More complicated path of Wilson lines were found for purely hadronic reactions

→ “generalized TMD factorization” (Bomhof, Mulders Pijlman, 2004 / ...)
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3. Semi-inclusive DIS beyond tree level

(Collins, Soper, 1981 / Collins, Soper, Sterman, 1985 / Ji, Ma, Yuan, 2004 / Collins, Metz, 2004 / ...)

• Sample Feynman diagram for cross section

– leading regions of loop momentum

l ∼ Q
(
1, λ

2
, λ
)

[N -collinear]

l ∼ Q
(
λ

2
, 1, λ

)
[h-collinear]

l ∼ Q
(
λ, λ, λ

)
[soft]

l ∼ Q
(
1, 1, 1

)
[hard]

• Expression for unpolarized structure function

FUU,T ∼ HNLO

∫
d

2~k⊥ d
2
~p⊥ d

2~l⊥ δ
(2)

(~k⊥ + ~q⊥ +~l⊥ − ~p⊥)

× f1 sub(x,~k
2
⊥)D1 sub(z, ~p

2
⊥)S(~l⊥)

• Avoid double counting by subtraction formalism→ modified definitions of TMDs

• Further development: absorb soft gluon effects in TMDs after Fourier transform

to bT -space (Collins, Foundations of Perturbative QCD, 2011)
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4. Breakdown of TMD factorization

• Sample process: p p→ jet jetX

• Originally thought to obey generalized TMD factorization

→ definition of TMDs depends on partonic subprocess

(Bomhof, Mulders, Pijlman, 2004 / ... / Collins, Qiu, 2007 / Collins, 2007)

• But, even generalized TMD factorization breaks down (Rogers, Mulders, arXiv:1001.2977)

– complicated color flow does not allow one to define two individual TMDs

(color-entanglement)

– specific to non-Abelian gauge theory

– simplification occurs if “hybrid approach” can be justified (neglect transverse

parton momenta in one of the incoming hadrons)
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Lecture 3: Phenomenology of TMDs

• Experimental data on TMD observables

• Sivers function from experiment

• Collins function and transversity from experiement

• Unpolarized TMDs from experiment

• TMDs in lattice QCD

• TMDs in models

• Model-independent constraints

– momentum sum rules

– positivity bounds (Bacchetta, Boglione, Henneman, Mulders, hep-ph/9912490)

– results from large-Nc limit (Pobylitsa, hep-ph/0301236)
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Experimental Data on TMD Observables

1. Overview of experimental facilities (→ much more in lectures by others)

(from M. Grosse Perdekamp, talk at TMD Summer School, 2017)
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2. Pioneering steps for Sivers and Collins effects (HERMES, hep-ph/0408013)

• first measurement of Sivers asymmetry,

essentially F
sin(φh−φS)

UT,T /FUU,T , in SIDIS

• first measurement of Collins asymmetry,

essentially F
sin(φh+φS)

UT /FUU,T , in SIDIS

• hydrogen target

• detection of charged pions

• nonzero Sivers effect for π
+

• nonzero Collins effect for π
+

and π
−

• in the meantime, many more data from

COMPASS, HERMES, JLab, with hydrogen,

deuteron and
3
He targets
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3. More data on Sivers effect in semi-inclusive DIS

Comparison of data from COMPASS and HERMES

(compilation from Grosse Perdekamp, Yuan, arXiv:1510.06783)

• measurements for π
+

and K
+

• results from COMPASS and HERMES largely agree

• robust nonzero effects

• asymmetry for K
+

at least as large as for π
+
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4. (Double) Collins effect in electron-positron annihilation: e
+
e
− → h1h2X

• Azimuthal modulation due to Collins effect (Boer, Jakob, Mulders, hep-ph/9702281)

dσ ∼
∑
q

e
2
q

[
D
h1/q

1 ⊗Dh2/q̄

1 + cos(2φ)H
⊥h1/q

1 ⊗H⊥h2/q̄

1

]
• Sample data (Belle, arXiv:0805.2975)

– effect is remarkably large, given results from SIDIS and square of H
⊥
1 /D1

– most of the data points have a very small error

• More data available, also from BaBar and BES
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5. Addressing worm gear functions in semi-inclusive DIS

A
cos(φh−φS)

LT ∼ g1T ⊗D1

(JLab Hall A, arXiv:1108.0489)

A
sin 2φh
UL ∼ h⊥1L ⊗H

⊥
1

(JLab Hall B, arXiv:1003.4549)

• Data for
3
He allow one to extract information for neutron

• More data available on both asymmetries from COMPASS and HERMES
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6. Addressing transverse momentum dependence of TMDs

• Transverse momentum dependence of SIDIS cross sections / asymmetries

Unpolarized cross section σUU (JLab Hall C, arXiv:0709.3020)

– data can help constrain unpolarized TMD-PDFs and TMD-FFs

– also, data available on transverse momentum dependence of ALL ∼ FLL/FUU,T
→ information on g

q
1L(x,~k

2
⊥) (JLab Hall B, arXiv:1003.4549)
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• Transverse momentum dependence of SIDIS multiplicities

M
h
(xB, Q

2
, zh, P

2
h⊥)
∣∣∣
COMPASS

=
d

4
σSIDIS(xB, Q

2
, zh, P

2
h⊥)

dxB dQ
2
dzh dP

2
h⊥

/
d

2
σDIS(xB, Q

2
)

dxB dQ
2

(COMPASS, arXiv:1305.7317)

– data are quite accurate, and they cover considerable range of Ph⊥

– more data available (see also, e.g., HERMES, arXiv:1212.5407)

– currently, multiplicities provide the strongest constraints on unpolarized TMDs
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Sivers function from Experiment

1. Exploratory attempt with very first data (Efremov et al, hep-ph/0412353)

• preliminary data on Sivers asymmetry weighted with Ph⊥/M

• observable sensitive to particular moment:

f
⊥(1)
1T (x) =

∫
d

2~k⊥
~k

2
⊥

2M
2
f
⊥
1T (x,~k

2
⊥)

• numerical results

• fit used large-Nc prediction: f
⊥u
1T = − f⊥d1T +O( 1

Nc
) (Pobylitsa, hep-ph/0301236)

• Sivers function at most 10% of unpolarized PDF

• general features still hold for modern fits
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2. More sophisticated extraction (Anselmino et al, arXiv:0805.2677)

• important ingredient: Gaussian shape (for all involved TMDs)

f
q
1 (x,~k

2
⊥;µ

2
) = f

q
1 (x;µ

2
)
e
−~k 2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

→
∫
d

2~k⊥ f
q
1 (x,~k

2
⊥;µ

2
) = f

q
1 (x;µ

2
)

• numerical results

– figure shows k⊥-moment of

∆
N
fq(x, k⊥) = −

2 k⊥

M
f
q
1 (x,~k

2
⊥)

– fit includes also ū, d̄, s, s̄

– 11 free parameters

– DGLAP evolution used

– error bands based on errors of data

– at present, systematic error of TMD

extractions hard to quantify

• some recent analyses use TMD evolution (Aybat, Prokudin, Rogers, 2011 /

Anselmino et al, 2012 / Sun, Yuan, 2013 / Echevarria et al, 2014 / ...)
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3. Unpolarized quarks in transversely polarized nucleon

• Recall density of unpolarized quarks:

Φ
q [γ

+
]
(x,~k⊥, P, S) = f

q
1 (x,~k

2
⊥)−

(~k⊥× ~S⊥) · P̂
M

f
⊥q
1T (x,~k

2
⊥)

• Visualization

Φ
q [γ

+
]
(x,~k⊥, P, S) at x = 0.1

(from arXiv:1212.1701, based on Anselmino et al, arXiv:1012.3565)

• Sivers effect generates distorted distribution of unpolarized quarks

• Such 3-D imaging of the nucleon now possible (plots based on data!)
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Collins function and Transversity from Experiment

1. General strategy: use observables in semi-inclusive DIS and e
+
e
− → h1h2X

dσ
∣∣
`N→`hX ∼

∑
q

e
2
q

[
f
q
1 ⊗D

h/q
1 + sin(φh + φS)h

q
1 ⊗H

⊥h/q
1

]
dσ
∣∣
e
+
e
−→h1h2X

∼
∑
q

e
2
q

[
D
h1/q

1 ⊗Dh2/q̄

1 + cos(2φ)H
⊥h1/q

1 ⊗H⊥h2/q̄

1

]
• combined analysis gives access to both H

⊥q
1 and h

q
1

2. Pioneering analysis (Anselmino et al, hep-ph/0701006)

• figure shows ∆T q = h
q
1

• first-ever extraction of transversity

• fit for h
d
1 saturates Soffer positivity

bound (blue line) (Soffer, hep-ph/9409254)

h
q
1 ≤

1

2
(f

q
1 + g

q
1)
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3. More recent analyses

• Extraction of Collins function (no TMD evolution) (Anselmino et al, arXiv:1510.05389)

– figure shows p⊥-moment of

∆
N
Dh/q =

2 p⊥

Mh

H
h/q
1

– opposite sign for favored and

disfavored Collins function

• Description of data (azimuthal asymmetry in e
+
e
− → h1h2X)

without TMD evolution

(Anselmino et al, arXiv:1510.05389)

with TMD evolution

(Kang et al, arXiv:1505.05589)

– current phenomenology of Collins effect does not require use of TMD evolution
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4. Collins effect in p
↑
p→ (h jet)X

• Measurement at RHIC (STAR, arXiv:1708.07080)

– data largely agree with calculation with TMD evolution

(Kang et al, arXiv:1707.00913)

– data largely agree with calculation without TMD evolution

(D’Alesio, Murgia, Pisano, arXiv:1707.00914)

– role of TMD evolution unclear for this observable

– but, data compatible with TMD factorization and universality of Collins effect
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Unpolarized TMDs from Experiment

1. First attempts using Gaussian model

• Transverse width from Cahn effect

– azimuthal dependence of unpolarized SIDIS cross section

dσ
∣∣
`N→`hX ∼ FUU + cosφh F

cosφh
UU + cos(2φh)F

cos 2φh
UU + . . .

– at small Ph⊥, F
cosφ
UU ∼ 1/Q

– Cahn effect: higher-twist effect due to transverse parton motion (Cahn, 1978)

F
cosφh
UU ∼

∑
q

e
2
q f

q
1 (xB)D

h/q
1 (zh)

〈k2
⊥〉 zh |~Ph⊥|
〈P 2

h⊥ 〉Q
e
−~P 2

h⊥/〈P
2
h⊥〉

π〈P 2
h⊥〉

〈P 2
h⊥〉 = z

2〈k2
⊥〉+ 〈P 2

hT〉 with PhT = z p⊥

– extraction of transverse widths (Anselmino et al, hep-ph/0501196)

〈k2
⊥〉 = 0.25 GeV

2 〈P 2
hT〉 = 0.20 GeV

2

– role of (other) higher-twist effects and radiative corrections ? (Bacchetta et al, 2008)

• Similar results obtained from transverse momentum dependence of (twist-2) FUU,T
in semi-inclusive DIS (Teckentrup, Schweitzer, Metz, 2010)
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2. Recent analyses

• Fit from Pavia group (Bacchetta et al, arXiv:1703.10157)

– data from SIDIS, Drell-Yan and Z-boson production (> 8000 data points)

– TMD evolution included

– Z-boson production at Tevatron

– widths for k
2
⊥ and P

2
hT

– overall, fit quite successful, but normalization adjusted to some data sets

→ issue with (general) formalism and/or data sets ?

• Other related work exists that includes a large set of data

(see, e.g., Scimemi, Vladimirov, arXiv:1706.01473)
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TMDs in Lattice QCD

• Pioneering results (Musch et al, arXiv:0908.1283, arXiv:1011.1213)

worm gear functions g
q
1T and h

⊥q
1L

unpolarized TMD-PDF f
q
1

– important ingredients: mπ ≈ 500 MeV; straight link connecting two quark fields;

effects integrated upon x

– g
q
1T , h

⊥q
1L have opposite sign for u-quarks and d-quarks, and relative to each other

– for small k⊥, lattice data compatible with Gaussian shape of TMDs

• More results available

– Sivers and Boer-Mulders effects for nucleon (Musch et al, arXiv:1111.4249)

– Boer-Mulders effect for pion (Engelhardt et al, arXiv:1506.07826)
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TMDs in Models

• Many calculations of TMDs in different models available:

spectator models; bag model; chiral quark soliton model; covariant parton model;

constituent quark models; etc.

• General philosophy for spectator models (Jakob, Mulders, Rodrigues, hep-ph/9704335)

– typical diagrams

– scalar and (axial) vector diquark as spectator

– often phenomenological nucleon-quark-diquark vertex used

– comprehensive studies exist (see e.g., Gamberg, Goldstein, Schlegel, arXiv:0708.0324 /

Bacchetta, Conti, Radici, arXiv:0807.0323 / ... )

• Particular result in chiral quark soliton model (Schweitzer, Strikman, Weiss, arXiv:1210.1267)

– TMD distributions (much) wider for anti-quarks than for valence quarks
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• Particular result in constituent quark model (Pasquini, Cazzaniga, Boffi, arXiv:0806.2298)

– worm gear functions g
q
1T and h

⊥q
1L

– same general pattern later seen in lattice QCD

• Generally, model calculations often allow one to get rough estimate and intuition
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Momentum Sum Rules for TMDs

1. Burkardt sum rule for Sivers function and implication

• Average transverse momentum of quark in transversely polarized nucleon

〈ki⊥(x)〉 =

∫
d

2~k⊥ k
i
⊥Φ

[γ
+

]
(x,~k⊥, P, S)

= −Mε
ij
⊥ S

j
⊥ f
⊥(1)
1T (x) with f

⊥(1)
1T (x) =

∫
d

2~k⊥
~k

2
⊥

2M
2
f
⊥
1T (x,~k

2
⊥)

• Sum rule (Burkardt, hep-ph/0402014)

∑
a

∫ 1

0

dx 〈ki,a⊥ (x)〉 = 0 →
∑
a

∫ 1

0

dx f
⊥(1) a
1T (x) = 0

• Implication (Efremov et al, hep-ph/0412353)

– use f
⊥u
1T ≈ −f

⊥d
1T , and small contribution to sum rule from anti-quarks

(from large-Nc analysis and phenomenolgy)

– one then finds ∫ 1

0

dx f
⊥(1) g
1T (x) small

– also indication from phenomenology that gluon Sivers function small

(e.g., Anselmino et al, hep-ph/0608211)
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2. Schäfer-Teryaev sum rule for Collins function and implication

• Average transverse momentum of hadron in transversely polarized quark

〈P i
hT (z)〉 ∼ ε

ij
⊥ s

j
⊥H

⊥(1)h/q
1 (z)

H
⊥(1)h/q
1 (z) = z

2
∫
d

2
~p⊥

~p
2
⊥

2M
2
h

H
⊥h/q
1 (z, ~p

2
⊥)

• Sum rule (Schäfer, Teryaev, hep-ph/9908412 / Meissner, Metz, Pitonyak, arXiv:1002.4393)

∑
h

∑
Sh

∫ 1

0

dz 〈P i,h
T (z)〉 = 0 →

∑
h

∑
Sh

∫ 1

0

dz zMhH
⊥(1)h/q
1 (z) = 0

• Implication

– consider fragmentation into (charged) pions only

– definition of favored and disfavored FFs

H
⊥ fav
1 = H

⊥π+
/u

1 = H
⊥π−/d
1 H

⊥ dis
1 = H

⊥π−/u
1 = H

⊥π+
/d

1

– one then finds ∫ 1

0

dz z H
⊥(1) fav
1 (z) ≈ −

∫ 1

0

dz z H
⊥(1) dis
1 (z)

– in reasonable agreement with information from experiment
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Lecture 4: TMDs: Special Topics I

• Some remarks on the evolution of TMDs

• Process dependence of the Sivers function

– some history of the Sivers function

– more on process dependence of the Sivers function

– phenomenology of process dependence of the Sivers function

• Universality of TMD-FFs

• Transverse SSAs in processes like p↑ + p → h + X

– sample data

– why transverse polarization ?

– necessary ingredients for transverse SSAs

– AN in p↑p → hX in the generalized parton model (GPM)

– AN in p↑p → hX in collinear twist-3 factorization
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Some Remarks on the Evolution of TMDs

• Further reading, for instance:

– Collins, Foundations of perturbative QCD, 2011

– Rogers, arXiv:1509.04766

• In full glory QCD, TMDs depend on two (auxiliary) scales; e.g.:

f1 = f1(x,~k
2
⊥;µ, ζ)

– µ: due to UV divergence

– ζ: due to rapidity divergence (various prescriptions for regulating this divergence)

• Rapidity divergence complicates the relation between TMDs and PDFs

– after regulating rapidity divergence one has

f1(x, µ) 6=
∫
d

2~k⊥ f1(x,~k
2
⊥;µ, ζ)

– rapidity divergence cancels for PDF f1(x, µ) (between real and virtual diagrams)

(e.g., Collins, hep-ph/0304122)
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• Evolution of TMDs

– µ-dependence: differs from DGLAP evolution

– ζ-dependence: governed by Collins-Soper evolution equation (Collins, Soper, 1981)

– TMD evolution has also dependence on non-perturbative input

→ at present, considerable uncertainties

• Numerical study (Aybat, Rogers, arXiv:1101.5057)

– evolution broadens TMDs

– evolution expected to dilute effects like

Sivers asymmetry, but present data

not conclusive in that regard

• At present, implication of TMD evolution still largely uncertain for many observables

and data sets
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Process Dependence of the Sivers Function

1. Some history of the Sivers function

• In 1989, Dennis Sivers suggested the function (correlation)

• In 1992, John Collins argued that f
⊥
1T = 0 due to T-reversal invariance

• Model calculation of transverse SSA in DIS (Brodsky, Hwang, Schmidt, hep-ph/0201296)

– spectator system modeled by scalar diquark

– FSI modeled by single photon exchange

– nonzero transverse target SSA AUT

– AUT given by interference of lowest-order graph

and (imaginary part of) box graph

• Interpretation of BHS calculation, correction, prediction (Collins, hep-ph/0204004)

– nonzero AUT of BHS can be described in TMD factorization using f
⊥
1T

– ifWTMD taken into account, T-reversal does not forbid existence of f
⊥
1T

– T-reversal rather predicts process dependence:

f
⊥
1T

∣∣
DIS

= − f⊥1T
∣∣
DY

h
⊥
1

∣∣
DIS

= −h⊥1
∣∣
DY

• These developments were very important for entire field of TMDs

• Citations of 1989 Sivers paper: ∼ 100 before 2002, ∼ 1000 today
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2. More on process dependence of the Sivers function

• “Box graph” and TMD factorization

(figure from Diehl, arXiv:1512.01328)

• Gauge link structure in semi-inclusive DIS and Drell-Yan (FSI vs ISI)

• T-reversal allows one to relate definitions in two processes (Collins, hep-ph/0204004)

– T-even TMDs are universal

– T-odd TMDs change sign between SIDIS and DY

– breakdown of universality, but in well-defined way

– strictly speaking, T-odd TMDs not exclusively property of nucleon
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• Sign reversal in lattice QCD (Musch et al, arXiv:1111.4249)

– calculation for staple-like gauge links

with finite length

– results saturate for distances of

about 0.4 fm

• What if sign reversal of f
⊥
1T not confirmed by experiment ?

– would not imply that QCD is wrong

– would imply that SSAs not understood in QCD

– problem with TMD-factorization

– implication on resummation of large transverse momentum logarithms

– implication on many calculations for, e.g., observables at the LHC

– problem with collinear twist-3 factorization

• Experimental check of process dependence of f
⊥
1T is crucial

(DOE Hadron Physics Performance Milestone, HP13: Test unique QCD predictions

for relations between single transverse spin phenomena in p-p scattering and those

observed in deep-inelastic lepton scattering)
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3. Phenomenology of process dependence of the Sivers function

• Measurement of Sivers asymmetry in p
↑
p→ W

±
/Z

0
X at RHIC

(STAR, arXiv:1511.06003)

– relevant scale is mass of heavy gauge bosons

– long evolution from measurements of Sivers effect in semi-inclusive DIS

– calculations with and without TMD evolution lead to very different results

for asymmetry

– such measurements can help constrain the (TMD) evolution

– based on Kang-Qiu (KQ) calculation without evolution one could conclude

verification of sign reversal
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– another calculation without TMD evolution (Anselmino et al, arXiv:1612.06413)

∗ according to this calculation, STAR measurement less conclusive

∗ generally, large uncertainties of Sivers functions for antiquarks imply

large uncertainties for asymmetry
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• Measurement of Sivers asymmetry in π
−
p
↑ → µ

+
µ
−
X at COMPASS

(COMPASS, arXiv:1704.00488)

– scale of measurement: 4.3 GeV
2 ≤ m2

µµ ≤ 8.5 GeV
2

– data point favors sign reversal of Sivers fucntion

• Other work on process dependence of Sivers effect

– simultaneous study of transverse SSAs in inclusive and in semi-inclusive DIS

(Metz et al, arXiv:1209.3138)

– study of transverse SSA AN in p
↑
p→ jetX

(Gamberg, Kang, Prokudin, arXiv:1302.3213)

• Overall, strong indication from phenomenology that Sivers effect depends on process
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Universality of TMD-FFs

• TMD-FFs in `N → `hX and e
+
e
− → h1h2X, a priori, have different Wilson lines

(ISI vs FSI)

• TMD-FFs in two processes cannot be related by means of T-reversal→ universality ?

• However, one-loop calculation in spectator model reveals universality of two

T-odd fragmentation functions D
⊥
1T , H

⊥
1 (Metz, hep-ph/0209054)

• TMD-FFs not sensitive to direction of Wilson lines (based on kinematics)

(Collins, Metz, hep-ph/0408249)

• All later studies confirmed universality of (T-odd) TMD-FFs (Yuan, 2007, 2008 /

Gamberg, Mukherjee, Mulders, 2008, 2010 / Meissner, Metz, 2008 / Yuan, Zhou, 2009)

• For instance, universality of Collins function H
⊥
1 is crucial ingredient for

first extraction of transversity distribution h1 (Anselmino et al, hep-ph/0701006)

71



Transverse SSAs in Processes like p↑ + p → h + X

1. Sample data

• Observable

AN =
dσ
↑ − dσ↓

dσ
↑

+ dσ
↓ ∼

dσL − dσR
dσL + dσR

• Charged pions: sample data (xF = 2PhL/
√
s)

(figure from Aidala, et al, arXiv:1209.2803)
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• Neutral pions: sample data

(STAR, 2012)
√
s = 200 GeV

PHENIX, 2013
√
s = 62.4 GeV

• General features

– very striking effects at large xF

– AN survives at large
√
s

– A
π

0

N systematically smaller than A
π
±
N

– AN cannot be explained in collinear parton model (Kane, Pumplin, Repko, 1978)

– data on transverse SSAs represent 40-year old puzzle
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2. Why transverse polarization ?

• Consider following process

p(Pa, Sa) + p(Pb)→ h(Ph) +X

• Parity-conserving single-spin correlation

εµνρσ P
µ
a P

ν
b P

ρ
h S

σ
a ∼ ~Sa · (~Pa × ~Ph) (∗)

– only transverse vector ~Sa⊥ enters

– SSA necessarily transverse (AUT , AN)

• Parity-conserving longitudinal single-spin correlations

– if more particles detected, parity-conserving longitudinal SSAs allowed;

example: F
sin 2φh
UL in `N → `hX

• Problem 9: Consider center-of-mass frame of two protons and verify (∗)
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3. Necessary ingredients for transverse SSAs

• Consider, for instance, elastic pion-proton scattering (π p
↑ → π p)

• Amplitude in Pauli-space

M = χ
†
f (A+ i ~σ · ~B)χi

• Transverse SSA (for polarization along y-direction)

AN =
dσ
↑ − dσ↓

dσ
↑

+ dσ
↓ =

Tr (A+ i ~σ · ~B)σy (A
∗ − i ~σ · ~B∗)

Tr (A+ i ~σ · ~B) (A
∗ − i ~σ · ~B∗)

=
2 Im(AB

∗
y + BxB

∗
z)

|A|2 + |Bx|
2

+ |By|
2

+ |Bz|
2

(∗)

– General result: AN nonzero only if

(i) interference of two different amplitudes

(ii) at least one of these amplitudes has imaginary part

• Problem 10: Check whether (∗) is correct
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4. AN in p
↑
p→ hX in the generalized parton model (GPM)

• Assumes TMD factorization for unpolarized and polarized cross sections

– already used about 40 years ago (Feynman, Field, Fox, 1978)

– generic structure of unpolarized cross section

dσ = H ⊗ Φ(xa, ~ka⊥)⊗ Φ(xb, ~kb⊥)⊗∆(z,~kc⊥)

• Main advantages

– decent description of twist-2 unpolarized cross section at leading order

– can mimic effects of higher-order corrections of collinear treatment

– contains certain kinematical higher twist effects that may be important

– provides “simple” explanation of nonzero AN through

(i) Sivers effect (Sivers, 1989)

(ii) Collins effect

• Main drawbacks

– presently, no derivation of TMD factorization for this process

– (arbitrary) infrared cutoff for kT integrations needed

– does not take into account physics of ISI/FSI for Sivers effect

• Many detailed phenomenological studies available

(e.g., Anselmino, Boglione, Murgia, hep-ph/9503290 / ... / Anselmino et al, arXiv:1304.7691)
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• Flavor structure of AN (use: no antiquarks, dominance of qg → qg channel)

(i) Sivers effect

dσ
↑
Siv(π

+
) ∼ f

⊥u
1T ⊗ f

g
1 ⊗D

fav
1 + f

⊥d
1T ⊗ f

g
1 ⊗D

dis
1

dσ
↑
Siv(π

−
) ∼ f

⊥d
1T ⊗ f

g
1 ⊗D

fav
1 + f

⊥u
1T ⊗ f

g
1 ⊗D

dis
1

– contribution from gluon fragmentation (not shown) largely cancels

– can explain reversed sign for AN(π
+
) and AN(π

−
)

– partial cancellation between favored and disfavored fragmentation

(ii) Collins effect

dσ
↑
Col(π

+
) ∼ h

u
1 ⊗ f

g
1 ⊗H

⊥,fav
1 + h

d
1 ⊗ f

g
1 ⊗H

⊥,dis
1

dσ
↑
Col(π

−
) ∼ h

d
1 ⊗ f

g
1 ⊗H

⊥,fav
1 + h

u
1 ⊗ f

g
1 ⊗H

⊥,dis
1

– h
u
1 and h

d
1 have opposite signs

– can explain reversed sign for AN(π
+
) and AN(π

−
)

– contributions from favored and disfavored fragmentation have same sign

– can be larger than Sivers contribution
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5. AN in p
↑
p→ hX in collinear twist-3 factorization

• Estimate in (twist-2) parton model (Kane, Pumplin, Repko, 1978)

AN ∼ αs
mq

Ph⊥
Note: AN ∼/ αs

mq√
s

– αs due to NLO graphs needed for imaginary part

– this transverse spin effect proportional to mass of polarized particle

– calculation clearly reveals subleading-twist (twist-3) nature of AN

• Collinear twist-3 factorization in full glory (Ph⊥ is the only scale)

(Ellis, Furmanski, Petronzio, 1983 / Efremov, Teryaev, 1983, 1984 /

Qiu, Sterman, 1991, 1998 / Koike et al, 2000, ... / etc.)

– Generic structure of polarized cross section

dσ
↑

= H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2) → Sivers-type

+ H
′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2) → Boer-Mulders-type

+ H
′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3) → “Collins-type”
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• Sivers-type contribution

– contribution from Qiu-Sterman function TF (Qiu, Sterman,1991)∫
dz
−
1 dz

−
2

4π
e
ixP

+
z
−
1 〈P, S|ψ̄q(0) γ

+
g F

+i
(z
−
2 )ψ

q
(z
−
1 )|P, S〉 = ε

ij
⊥ S

j
⊥ T

q
F (x, x)

vanishing gluon momentum→ soft gluon pole matrix element

– sample diagram for qq → qq channel

∗ quark propagator goes on-shell for vanishing gluon momentum

∗ provides required imaginary part

∗ attach extra gluon in all possible ways and consider all graphs and channels

∗ contributions from both ISI and FSI
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– generic structure of dσ
↑
Siv

dσ
↑
Siv ∼

∑
i

∑
a,b,c

H
i ⊗ T aF (xa, xa)⊗ f

b
1 ⊗D

c
1 → SGPs

+
∑
i

∑
a,b,c

H̃
i ⊗
(
T
a
F (0, xa) + T̃

a
F (0, xa)

)
⊗ f b1 ⊗D

c
1 → SFPs

∗ soft gluon pole (SGP) contribution has relation to TMD approach

∗ soft fermion pole (SFP) contribution has no relation to TMD approach

∗ SFP matrix elements may be small (Kang et al, 2010 / Braun et al, 2011)

∗ Hi
and H̃

i
contain also physics of ISI/FSI (in contrast to GPM)

– relation between TF and f
⊥
1T (Boer, Mulders, Pijlman, hep-ph/0303034)

T
q
F (x, x) = −

∫
d

2~k⊥
~k

2
⊥

M
f
⊥q
1T (x,~k

2
⊥)
∣∣∣
DIS

= 2 ε
ij
⊥ S

j
⊥ 〈k

i,q
⊥ (x)〉

∗ provides very intuitive interpretation of TF

∗ relation between A
Siv
SIDIS in SIDIS and AN in p

↑
p→ hX possible

∗ flavor structure of AN like in TMD approach

∗ because of ISI/FSI, magnitude and sign of AN may differ from TMD approach
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– successful phenomenology using (soft-gluon pole function) TF (x, x)

∗ fit of AN for pion and kaon production in proton-proton collisions

(Kouvaris et al, hep-ph/0609238)

∗ later on, general results confirmed, and studies extended (SFPs included)

(Kanazawa, Koike, arXiv:1005.1468, arXiv:1104.0117)
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• Sivers-type contribution and sign-mismatch problem (Kang, et al, arXiv:1103.1591)

– assume AN in p
↑
p→ hX is dominated by Sivers-type contribution

– TF (x, x) can be extracted from different sources (direct vs Sivers input)

– striking sign mismatch !

– which sign for TF (x, x) is correct ?

– model calculation suggests sign coming from Sivers input (Braun et al, 2011)

– one may doubt dominance of Sivers-type contribution in AN

– Boer-Mulders type contribution to dσ
↑

small (Koike, Kanazawa, hep-ph/0007272)

– can large AN in p
↑
p→ hX be caused by “Collins-type” contribution ?
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• Twist-3 fragmentation contribution to AN in p
↑
p→ hX

– analytical results available (Metz, Pitonyak, arXiv:1212.5037)

– fit of data from RHIC (Kanazawa et al, arXiv:1404.1033)

– simultaneous description of AN , and A
Siv
SIDIS , A

Col
SIDIS , A

cos(2φ)

e
+
e
− possible

– AN in p
↑
p→ hX may be largely caused by (higher-twist) fragmentation effect

– independent information on relevant 3-parton fragmentation correlator needed

– recent update of numerics; general conclusions unchanged (Gamberg et al, 1701.09170)
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Lecture 5: TMDs: Special Topics II

• Some remarks on GPDs
(→ lectures by Daria Sokhan)

• Nontrivial relations between TMDs and GPDs

– relation between f⊥1T and the GPD E
– more nontrivial relations between TMDs and GPDs

• Generalized TMDs (GTMDs)

– definition of GTMDs

– GTMDs as “mother distributions”

– GTMDs and Wigner functions

– GTMDs and orbital angular momentum
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Some Remarks on GPDs

• Appear in QCD-description of hard exclusive reactions (DVCS, HEMP)

• Graphical representation of GPD correlator, and kinematics in symmetric frame

P =
p+ p

′

2
∆ = p

′ − p

• GPD-correlator for unpolarized quarks (spin dependence of hadrons suppressed)

F
q [γ

+
]

=

∫
dz
−

4π
e
ik · z 〈p′ | ψ̄q(−z

2) γ
+WPDF[−z

2,
z
2]ψ

q
(z2) | p〉

∣∣∣
z
+

=~z⊥=0

=
1

2P
+
ū(p

′
)

(
γ

+
H
q
(x, ξ, t) +

iσ
+µ

∆µ

2M
E
q
(x, ξ, t)

)
u(p)

x =
k

+

P
+

ξ =
p

+ − p′+

p
+

+ p
′+ = −

∆
+

2P
+

t = ∆
2

• (Eight) leading twist quark GPDs for

ψ̄ γ
+
ψ ψ̄ γ

+
γ5ψ ψ̄ iσ

i+
γ5ψ
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• Relation to forward PDFs and form factors (crucial for modeling)

H
q
(x, 0, 0) = f

q
1 (x)

∫ 1

−1

dxH
q
(x, ξ, t) = F

q
1 (t)

• Impact parameter representation (ξ = 0)→ density interpretation

(Burkardt, hep-ph/0005108, hep-ph/0207047 / Pire, Ralston, hep-ph/0110075 / Diehl, hep-ph/0205208)

Fq [γ
+

]
(x,~b⊥, S) =

∫
d

2~∆⊥

(2π)
2
e
−i ~∆⊥·~b⊥ F q [γ

+
]
(x, ~∆⊥, S)

= Hq
(x,~b

2
⊥) +

ε
ij
⊥ b

i
⊥ S

j
⊥

M

∂

∂~b
2
⊥
Eq(x,~b 2

T )

– 3-D structure in (x,~b⊥)-space (“spatial” imaging)

– ~b⊥ relative to transverse center of longitudinal momentum
∑

i p
+
i
~b⊥i /

∑
i p

+
i

– term containing Eq generates dipole pattern

→ (numerically large) distortion of Fq [γ
+

]
(x,~b⊥, S)
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• GPDs in impact parameter space: sample plots

(i) no polarization: toy model for GPD (Burkardt, hep-ph/0207047)

– b⊥ distribution gets narrow at large x

– general pattern agrees with

phenomenology

(ii) with transverse polarization (nucleon and quark) (QCDSF-UKQCD, hep-lat/0612032)

left: unpolarized quarks in transversely

polarized target

right: transversely polarized quarks in

unpolarized target

– distortion stronger for down quarks

– distortion stronger for transv. pol.

quarks in unpol. nucleon

– similar results in models and

GPD parameterizations
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Nontrivial Relations between TMDs and GPDs

1. Relation between f
⊥
1T and the GPD E

• Example of trivial relation between TMDs and GPDs∫
d

2~k⊥ f
q
1 (x,~k

2
⊥) = f

q
1 (x) = H

q
(x, 0, 0)

• Sivers effect and “chromodynamic lensing” (Burkardt, hep-ph/0302144)

– flavor dipole moment

d
q,i

=

∫
dx

∫
d

2~b⊥ b
i
⊥F

q [γ
+

]
(x,~b⊥, S)

= −
ε
ij
⊥ S

j
⊥

2M

∫
dxE

q
(x, 0, 0) = −

ε
ij
⊥ S

j
⊥

2M
κ
q → |dq| ≈ 0.2 fm (large)

– connection with Sivers effect
∗ assume that γ

∗
“sees” b⊥-distribution

∗ assume that FSI of struck quark is attractive

∗ allows one to determine sign of Sivers effect

for π
±

in semi-inclusive DIS
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• Relation between f
⊥
1T and the GPD E in spectator model

– rationale underlying “chromodynamic lensing”, a priori, not obvious: why should

QCD description of SIDIS be related to GPD-correlator in b⊥-space ?

– but, quantitative relation in scalar diquark model (Burkardt, Hwang, hep-ph/0309072)

〈
k
q,i
⊥ (x)

〉
UT

= −
∫
d

2~k⊥ k
i
⊥
ε
jk
⊥ k

j
⊥ S

k
⊥

M
f
⊥q
1T (x,~k

2
⊥) (model-independent)

=

∫
d

2~b⊥ I
q,i

(x,~b⊥)︸ ︷︷ ︸
lensing function

ε
jk
T b

j
⊥ S

k
⊥

M

(
Eq(x,~b 2

⊥)

)′
(model-dependent)

– Interpretation of model result

Sivers effect = Distortion ⊗ FSI
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• Sign reversal of Sivers function and “chromodynamic lensing”

– “chromodynamic lensing” compatible with sign reversal

f
⊥
1T

∣∣
DIS

= − f⊥1T
∣∣
DY

– in model, lensing function Iq,i(x,~b⊥) reverses sign

– in “lensing picture”, sign reversal due to difference between attractive FSI

and repulsive ISI (often used to explain sign reversal to general audience)

– in “lensing picture”, Sivers effect factorizes into universal property of hadron

(distortion) and non-universal contribution

• No model-independent factorization of Sivers effect

Sivers effect 6= Distortion ⊗ FSI

– is obvious, e.g., from model calculations (Meissner, Metz, Goeke, hep-ph/0703176)

– numerical impact of “factorization breaking” contributions presently not known
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2. More nontrivial relations between TMDs and GPDs

• Comparing correlators for TMDs and GPDs (Diehl, Hägler, hep-ph/0504175)

Φ
q [γ

+
]
(x,~k⊥, S) = f

q
1 (x,~k

2
⊥)−

ε
ij
⊥ k

i
⊥ S

j
⊥

M
f
⊥q
1T (x,~k

2
⊥)

Fq [γ
+

]
(x,~b⊥, S) = Hq

(x,~b
2
⊥) +

ε
ij
⊥ b

i
⊥ S

j
⊥

M

(
Eq(x,~b 2

⊥)

)′

– comparison allows one to find “analogy”

f
⊥q
1T ↔ −

(
Eq
)′

– comparison can be extended to other quark and gluon distributions

– no relation for GPDs Ẽ, ẼT (drop out for ξ = 0) and TMDs g1T , h
⊥
1L
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• Results from comparing correlators (Meissner, Metz, Goeke, hep-ph/0703176)

(i) (trivial) relations of first type

f
q/g
1 ↔ Hq/g

g
q/g
1L ↔ H̃q/g(

h
q
1T +

~k
2
T

2M
2
h
⊥q
1T

)
↔
(
Hq
T −

~b
2
T

M
2

∆H̃q
T

)
(ii) relations of second type

f
⊥q/g
1T ↔ −

(
Eq/g

)′
h
⊥q
1 ↔ −

(
EqT + 2H̃q

T

)′
(
h
g
1T +

~k
2
T

2M
2
h
⊥g
1T

)
↔ − 2

(
Hg
T −

~b
2
T

M
2

∆H̃g
T

)′
(iii) relations of third type

h
⊥q
1T ↔ 2

(
H̃q
T

)′′
h
⊥g
1 ↔ 2

(
EgT + 2H̃g

T

)′′
(iv) relation of fourth type

h
⊥g
1T ↔ − 4

(
H̃g
T

)′′′
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• Some consequences

– relation for Boer-Mulders function h
⊥q
1 expected to match with the one for f

⊥q
1T

(Burkardt, hep-ph/0505189 / Meissner, Metz, Goeke, hep-ph/0703176)

〈
k
q,i
⊥ (x)

〉
UT

= −
∫
d

2~k⊥ k
i
⊥
ε
jk
⊥ k

j
⊥ S

k
⊥

M
f
⊥q
1T (x,~k

2
⊥)

=

∫
d

2~b⊥ I
q,i

(x,~b⊥)
ε
jk
T b

j
⊥ S

k
⊥

M

(
Eq(x,~b 2

⊥)

)′
〈
k
q,i
⊥ (x)

〉j
TU

= −
∫
d

2~k⊥ k
i
⊥
ε
kj
⊥ k

k
⊥

M
h
⊥q
1 (x,~k

2
⊥)

=

∫
d

2~b⊥ I
q,i

(x,~b⊥)
ε
kj
⊥ b

k
⊥

M

(
EqT (x,~b

2
⊥) + 2H̃q

T (x,~b
2
⊥)

)′
∗ distortion of quark densities governed by “anomalous magnetic moments”

(i) unpol. quarks: κ
u

= 1.7 κ
d

= −2.0 (experiment)

(ii) transv. pol. quarks: κ
u
T = 3.0 κ

d
T = 1.9 (QCDSF-UKQCD, hep-lat/0612032)

∗ current phenomenology of f
⊥q
1T and h

⊥q
1 compatible with these numbers

– relation for h
⊥q
1T expected to be different
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• Model results continued (Meissner, Metz, Goeke, hep-ph/0703176)

– scalar diquark model of the nucleon

∗ allows one to study relations for quarks and (scalar) diquarks

– quark target model in QCD

∗ allows one to study relations for quarks and gluons
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– moments of TMDs and GPDs

X
(n)

(x) =

∫
d

2~k⊥

( ~k
2
⊥

2M
2

)n
X(x,~k

2
⊥)

Y
(n)

(x) =
1

2M
2

∫
d

2~∆⊥

( ~∆
2
⊥

2M
2

)n−1

Y
(
x, 0,−

~∆
2
⊥

(1− x)
2

)
– relations of second type

f
⊥q (n)
1T (x) = H2(n)

1

1− x
E
q (n)

(x) (0 ≤ n ≤ 1)

∗ H2(n) depends on model

∗ formula holds for all the relations of second type

∗ it is not necessary to go to b⊥ space in order to establish relations

∗ particular cases

f
⊥q (0)
1T (x) =

π eq es

48(1− x)
E
q
(x, 0, 0) (Lu, Schmidt, hep-ph/0611158)

f
⊥q (1)
1T (x) =

eq es

4(2π)
2
(1− x)

E
q (1)

(x)
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– relations of third type

h
⊥q (n)
1T (x) = H3(n)

1

(1− x)
2
H̃
q (n)
T (x) (0 ≤ n ≤ 1)

∗ H3(n) is the same in both models

∗ formula holds for all the relations of third type

∗ particular case

h
⊥q (0)
1T (x) =

∫
d

2~k⊥ h
⊥q
1T (x,~k

2
⊥) =

3

(1− x)
2
H̃
q
T (x, 0, 0)

∗ same relation, but with pre-factor 2 on r.h.s., found in other model

(Pasquini, Cazzaniga, Boffi, arXiv:0806.2298 )

– relation of fourth type

∗ trivially satisfied in quark target model because

h
⊥g
1T = H̃g

T = 0

• All nontrivial relation between TMDs and GPDs are model-dependent

(Meissner, Metz, Schlegel, arXiv:0906.5323)
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Generalized TMDs

1. Definition of GTMDs

• Graphical representation of GTMD correlator, and kinematics in symmetric frame

P =
p+ p

′

2
∆ = p

′ − p

• GTMD correlator: definition (through traces)

W
q [Γ]

=

∫
dz
−
d

2
~z⊥

2 (2π)
3
e
ik · z 〈p′ | ψ̄q(−z

2) ΓWTMD[−z
2,

z
2]ψ

q
(z2) | p〉

∣∣∣
z
+

=0

– W
q [Γ]

parameterized through GTMDs X
q
(x, ξ,~k⊥, ~∆⊥)

x =
k

+

P
+

ξ =
p

+ − p′+

p
+

+ p
′+ = −

∆
+

2P
+

~k⊥ ~∆⊥ = ~p
′
⊥ − ~p⊥

– note that ∆
2

= t (ξ, ~∆
2
⊥)
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• Leading-twist chiral-even quark GTMDs (Meissner, Metz, Schlegel, arXiv:0906.5323)

W
[γ

+
]

=
1

2M
ū(p

′
)

[
F1,1 +

iσ
i+
k
i
⊥

P
+

F1,2 +
iσ

i+
∆
i
⊥

P
+

F1,3 +
iσ

ij
k
i
⊥∆

j
⊥

M
2

F1,4

]
u(p)

W
[γ

+
γ5]

=
1

2M
ū(p

′
)

[
−
iε
ij
⊥ k

i
⊥∆

j
⊥

M
2

G1,1 +
iσ

i+
γ5 k

i
⊥

P
+

G1,2 +
iσ

i+
γ5 ∆

i
⊥

P
+

G1,3

+ iσ
+−
γ5G1,4

]
u(p)

• General results

– 16 leading-twist GTMDs for quarks (Meissner, Metz, Schlegel, arXiv:0906.5323)

– 16 leading-twist GTMDs for gluons (Lorcé, Pasquini, arXiv:1307.4497)

– GTMDs have real and imaginary part
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2. GTMDs as “mother distributions”

• GTMD-correlator

W
q [Γ]

=

∫
dz
−
d

2
~z⊥

2 (2π)
3
e
ik · z 〈p′ | ψ̄q(−z

2) ΓWTMD[−z
2,

z
2]ψ

q
(z2) | p〉

∣∣∣
z
+

=0

• Projection onto TMDs and GPDs

Φ
q [Γ]

=

∫
dz
−
d

2
~z⊥

2 (2π)
3
e
ik · z 〈p | ψ̄q(−z

2) ΓWTMD[−z
2,

z
2]ψ

q
(z2) | p〉

∣∣∣
z
+

=0

= W
q [Γ]
∣∣∣
∆=0

F
q [Γ]

=

∫
dz
−

4π
e
ik · z 〈p′ | ψ̄q(−z

2) ΓWPDF[−z
2,

z
2]ψ

q
(z2) | p〉

∣∣∣
z
+

=~z⊥=0

=

∫
d

2~k⊥W
q [Γ]

– all TMDs and GPDs are projections of GTMDs

– GTMDs contain genuine new physics

– GTMDs describe the most general two-parton structure of hadrons
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• Overview of objects characterizing the parton structure of hadrons

(figure from Diehl, arXiv:1512.01328)

– hardly any studies on describing processes with k
−

dependent correlators

(parton correlation functions)

– mapping out GTMDs may be an ultimate goal of parton structure studies
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3. GTMDs and Wigner functions

• Wigner quasi-probability distribution in QM (calculable from wave function)

|ψ(x)|2 =

∫
dpW(x, p)

|ψ(p)|2 =

∫
dxW(x, p)

〈O(x, p)〉 =

∫
dx dpO(x, p)W(x, p)

• Analogy: Wigner distributions for 3-D imaging of hadrons

(Belitsky, Ji, Yuan, hep-ph/0307383 / Lorcé, Pasquini, Vanderhaeghen, arXiv:1102.4704)

Wq [Γ]
(x,~k⊥,~b⊥) =

∫
d

2~∆⊥

(2π)
2
e
−i ~∆⊥·~b⊥W q [Γ]

(x,~k⊥, ~∆⊥)
∣∣∣
ξ=0

Fq [Γ]
(x,~b⊥) =

∫
d

2~k⊥W
q [Γ]

(x,~k⊥,~b⊥)

Φ
q [Γ]

(x,~k⊥) =

∫
d

2~b⊥W
q [Γ]

(x,~k⊥,~b⊥)

〈O(x,~k⊥,~b⊥)〉 =

∫
dx d

2~k⊥ d
2~b⊥O(x,~k⊥,~b⊥)Wq[Γ]

(x,~k⊥,~b⊥)
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• Numerical example of Wigner distributions (Lorcé, Pasquini, arXiv:1106.0139)

– figures showWq [γ
+

]
U (x,~k⊥,~b⊥) (unpolarized quarks and unpolarized nucleon),

integrated upon x, for fixed ~k⊥

– results in light-cone constituent quark model

– wider distribution for down quarks (known also from form factor studies)

– distortion due to dependence on ~k⊥ ·~b⊥
– top-bottom symmetry sinceWq [γ

+
]

U is even function of ~k⊥ ·~b⊥
– overall results in line with intuition from confinement

• Wigner functions can become negative

– probability interpretation, in general, does not work

– appropriate smearing of Wigner distribution may be remedy for problem

(e.g., Husimi distribution) (Hagiwara, Hatta, arXiv:1412.4591)
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4. GTMDs and orbital angular momentum

• Parton OAM in longitudinally polarized nucleon (Lorcé, Pasquini, arXiv:1106.0139 /

Hatta, arXiv:1111.3547 / Hägler, Mukherjee, Schäfer, hep-ph/0310136)

L
q
z =

∫
dx d

2~k⊥ d
2~b⊥ (~b⊥ × ~k⊥)zW

q [γ
+

]
L (x,~k⊥,~b⊥)

= −
∫
dx d

2~k⊥
~k

2
⊥

M
2
F
q
1,4(x,

~k
2
⊥)
∣∣∣
∆=0

– intuitive definition of OAM

– same equation for both LJM (staple-like link) and LJi (straight link)

(Ji, Xiong, Yuan, arXiv:1202.2843)

– equation holds for gluons as well

• Exploratory calculation of L
q
JM in lattice QCD (Engelhardt, arXiv:1701.01536)

– figure shows essentially LJM/LJi

– large numerical difference between

LJM and LJi

– entire development leading to this result

is milestone in spin physics
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Lecture 6: TMDs: Opportunities at a new EIC

• Limitations of existing data / facilities

• Jefferson Lab, 12 GeV upgrade

• (Potential) future electron-ion collider(s)
(→ lectures by Yulia Furletova)

• Addressing the gluon Sivers function

• Addressing the density of linearly polarized gluons

• Addressing GTMDs / Wigner functions
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Limitations of Existing Data / Facilities

Existing data / facilities typically suffer from one or more of the following:

• lack of data precision (due to lack of machine luminosity)

(COMPASS, arXix:1801.01488)

– sample data for

A
sin(2φh)

UL ∼ h⊥1L ⊗H
⊥
1

– models predict small effect

– data basically only allow conclusion that

effect compatible with zero

– also, often only 1-D binning for

SIDIS observables

• lack of kinematical coverage — in particular, range in Q
2

and x

– higher-twist contributions, sea quarks and gluons, parton saturation, etc. ?

• lack of polarization

• lack of particle species, e.g., heavy nuclei

– parton saturation, etc. ?

• limited detector capabilities
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Jefferson Lab, 12 GeV Upgrade

• Overview

(from Z.-E. Meziani, talk at Transversity 2017)
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• Projections for Sivers and Collins asymmetries in Hall A

(from Z.-E. Meziani, talk at Transversity 2017)
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• Kinematical coverage and projections for Sivers asymmetry in Hall B

(from Z.-E. Meziani, talk at Transversity 2017)
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(Potential) Future Electron-Ion Collider(s)

• Overview

(from E. Sichterman, talk at POETIC 8, 2018)

109



• Two initiatives for future EIC in the US

(from E. Sichterman, talk at POETIC 8, 2018)
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• Some more details about two initiatives for future EIC in the US

(from E. Sichterman, talk at POETIC 8, 2018)
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• Q2
and x range at a future EIC in the US

(from arXiv:1212.1701)

– some of existing data at (sufficiently) large Q
2
, but often lack of precision

– EIC can produce precision data

– EIC can enter new kinematic domain (sea quarks and gluons)

– EIC can move field of TMDs to next level
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• Projected accuracy of Sivers asymmetry at a future EIC in the US

(from arXiv:1212.1701)

– small errors

– note the multi-dimensional binning
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• Projected accuracy and kinematics of Sivers function at a future EIC in the US

– x-dependence for uval and usea

(from arXiv:1212.1701)

– 3-D representation

(from arXiv:1212.1701)
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Addressing the Gluon Sivers Function

1. General strategy for addressing gluon content of nucleon in lepton-nucleon scattering

• Typically, hunting for boson-gluon fusion process γ
∗
g → q q̄ via

– di-hadron production (at high transverse momenta)

– di-jet production

– heavy-quark production (open charm)

– quarkonium production

• Each channel has advantages and drawbacks

2. Feasibility study of gluon Sivers effect at EIC (Zheng et al, arXiv:1805.05290)

• Study of open charm, di-hadron and di-jet production

• Coverage of x-range for the three channels

– channels have range of overlap

→ cross checks possible

– channels are also complementary
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• Results for open charm production (DD̄ pairs)

– figure shows fraction of quark-initiated

and gluon-initiated partonic process

– boson-gluon fusion dominates

– figure shows Sivers asymmetry

– assumption: f
⊥ g
1T = 10 % of positivity

bound

– comparison to result at parton level

– large errors since D → Kπ channel

has 3.7 % branching ratio only
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• Results for di-hadron production (light hadrons)

– figure shows fraction of quark-initiated

and gluon-initiated partonic process

– boson-gluon fusion dominates at

small x only

– figure shows Sivers asymmetry

– two models for f
⊥ g
1T (black and

blue symbols)

– comparison to result at parton level and

to quark contribution

– strong dilution of asymmetry due

to fragmentation

– compared to open charm production,

smaller asymmetry but smaller errors
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Addressing the Density of Linearly Polarized Gluons

• Definition of h
⊥g
1 (Mulders, Rodrigues, hep-ph/0009343 /

Meissner, Metz, Goeke, hep-ph/0703176)

Φ
g [ij]

(x,~k⊥) =
1

xP
+

∫
dz
−
d

2
~z⊥

(2π)
3

e
ik · z 〈P |F+j

a (−z
2)Wab[−z

2,
z
2]F

+i
b (z2)|P 〉

∣∣∣
z
+

=0

=
1

2
δ
ij
⊥ f

g
1 (x,~k

2
T ) +

1

2

(
k
i
⊥ k

j
⊥

M
2
−

1

2
δ
ij
⊥

~k
2
⊥

2M
2

)
h
⊥g
1 (x,~k

2
T )

– no target polarization

– no Wilson line required for nonzero h
⊥g
1 (unlike h

⊥q
1 )

– positivity bound
~k

2
⊥

2M
2
h
⊥g
1 (x,~k

2
⊥) ≤ fg1 (x,~k

2
⊥)

• At small x, positivity bound saturated in

– quark target model (Meissner, Metz, Goeke, hep-ph/0703176)

– McLerran-Venugopalan model (Metz, Zhou, arXiv:1105.1991 /

Dominguez et al, arXiv:1109.6293)
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• Observable in heavy-quark production: `+N → `+Q(k1) + Q̄(k2) +X

– generic structure of unpolarized cross section (Boer et al, arXiv:1011.4225)

dσ ∼ A+ B cos 2(φK − φκ) + . . . ~K⊥ =
1

2
(~k1⊥ − ~k2⊥) ~κ⊥ = ~k1⊥ + ~k2⊥

B ∼
∑
q

e
2
q h
⊥g
1 (x,~κ

2
⊥)× kinematical factors

B vanishes for Q
2

= mQ = 0

– numerical estimate (for saturated positivity bound) (Pisano et al, arXiv:1307.3417)

(shown is essentially B/A)
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Addressing GTMDs / Wigner Functions

• For quite some time it was unclear how GTMDs can be measured

• Quark GTMDs in exclusive double Drell-Yan process

(Bhattacharya, Metz, Zhou, arXiv:1702.04387)

– process: πN → (`
+
1 `
−
1 )(`

+
2 `
−
2 )N

′

– leading-order diagrams

– access to (all) leading-twist chiral-even quark GTMDs

– in particular, access to F
q
14 (relation to OAM)

– only ERBL region (−ξ ≤ x ≤ ξ) enters in leading-order analysis

• Can quark GTMDs be measured in lepton-nucleon scattering ?
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• Gluon GTMDs in lepton-nucleon and lepton-nucleus scattering

– exclusive di-jet production in `N collisions and `A collisions at small x

(Hatta, Xiao, Yuan, arXiv:1601.01585)

– including polarization in same process may give access to gluon OAM (F
g
14)

at small x (Hatta et al, arXiv:1612.02445)

– same process may also give access to gluon OAM (F
g
14) at moderate x

(Ji, Yuan, Zhao, arXiv:1612.02438)

121


