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Y Let me try to explain some basics of gauge theory
on the lattice & their physical interpretation

Then you come up with the answer of why we do

Lattice QCD

e Slowly, we will move towards concepts of correlation functions
(two-point, three-point [connected and disconnected insertions],
four-point functions) to calculate mass, charge, form factors, parton
distributions on the lattice)

v Other than going too technical, | will follow path of
asking simple questions. Aim Is to discuss a very
small segment of LQCD and be more interactive

* Most important:
Feel free to interrupt during the lecture



(Something very
interesting next slide

Natural Units

kg, Ib, m, sec..these are very human centered measurement units

Y Much better way is to tie units to nature itself

Y We work in natural units = ¢ = 1

Y Convenient....but is there a more fundamental reason ?

SR : time = distance / c
QM: energy = h/time

length]™' = [time] ™' = [mass| = [temperature] = [energy] = GeV

For example: lecture duration 1 hr ~ 1027 GeV-1is what the
light takes to travel in terms of 1 proton length (mass mpc? ~ 1 GeV)

Well....up to a certain scale




(Something even More interesting next slide)
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F(grav) ~ —Gn

strength ~1/137 (pure number) strength
(not a pure ~ (107 em) ~ (Lp)’

number) 11019 aer

Ly

e-e scattering through graviton: QM probability ~ (amplitude)?

amplitude~ G X E?

tiny for E << E, bigger than 1(!!) for E > E,
Not allowed in QM !

S0, one can't (NAIVELY) extrapolate understanding
of ordinary gravity at large scale to very short scale NOT END OF STORY
(Planck Scale) IF TIME PERMITS —LATER



To approach a plausible solution string theory
comes into play (and exactly why “string”, not point,
straight line, triangle or some other shapes)

However, idea of “string” didn’t come first to solve QG,

but came to explain QCD phenomenon

Actually, similar type of argument can explain
why Higgs particle required to solve problem with
massive W-boson and how ~1989 people predicted
80 < Higgs mass < 200 GeV
(If one just doesn't think in terms of Mexican-hat potential)
Clue: massive particle has 3-spin, massless particle has
2-spin(helicity).

|possible discussion after lecture if interested]



Lattice QCD Setup

The consistent way of describing QCD on the lattice is the following:

1. discretization of spacetime (Euclidean) by a hypercubic lattice with cutoff, A

called lattice regularization,
2. discretization of continuum QCD action,
3. quantization of QCD using path integral formalism,

4. application of Monte-Carlo simulation to calculate expectation values

of different operators.



Lattice QCD Setup

Y Hyper-cubic lattice: 4D lattice for which distances between
sites are same in all directions

Quark fields
e _ = wa,c(x)
Plaguette: elementary A ¥ 1 ¥ [ color 3-vectors
square closed by 4 links < = 2 Dirac 4-spinors,
\‘\fL\“L\ﬁ n_f vectors and
- & : - Grassmann variables

I f

gluon quark

Gauge field variables U, (x) € SU(3)

3x3 complex, unitary matrices on each link



* Fields on site

What does it mean in comparison with continvum QFT and
how to approximate continuum fields??

O(T) cont = @z (lattice)

* Gauge fields attributed to links on lattice

What is the physics?

Calculate number of sites, links and plaquettes
for a symmetric hypercubic d dimensional lattice
lattice of size L with periodic boundary conditions



Y Need action invariant under local gauge transformation
with SU(3) matrix Q(x)
P(z) = ¥'(2) = Q(2)Y(z)
Y(z) = P'(2) = P(z)Q(z)
Au(x) = A, (2) = Q2) A (2)(2)T +4(8,0(2))Q(x)]
S’ ¢’ A'l = Sy, ¢, A
* Rotation invariance [#x)Q)Qe)dx) = g(x)u(x)

Y Consider discretized version of lattice fermion action

Discretized version of derivative 0,0(x)

+_n n_+ " +_n+ﬂ
Not gauge invariant [N T




Y Gauge invariance of lattice action

B(n)(n) — & () (n) = HR)An) T QAnYP(n) = P(n)p(n) 5

B()p(n+ 1) — P ()Y (n+ 1) = p)QAR)TQn + R(n+ ) o

Y We need to connect quark fields at different sites with
gauge link
U,(n) — U[L(n) = Q(n)U,(n)2(n + ,&)Jr

Yk Then we recover gauge invariance

' (n)U,, ()" (n + 1) = ¢(n)Qn) U, (n)Qn + i) (n + fi)
P(n)QUn) Q(n)UL(n)Un + 2)"Qn + @) (n + i)
b(n)Uy(n)p(n + [1)



YU, (n) can be related to gauge transporter in continuum,
a path ordered exponential integral of gauge field A,
along Cz, connecting xandy

G(ay) = Pe'Jea, A8

Problem ::

What does actually this gauge transporter allow the quark to change?
Clue: Related to why U_\mu is a unitary NXN matrix !

YAlong a link from z=n to y=n-+[
G(n,n + j1) = "4
=U,(n) =1+iaA,(n) + O(a®)

Uy (n) y

SE T H

Y Then gauge invariant  S¢[y, 4, U]

2a
neA




Y Now construct lattice gauge action with gauge invariant
plaquette

opposite direction 7+ 7 Uu(n+7) n-+ i+ D

* Uy (1) UN(nM
xU_(n+p+2)U_,(n+7D) Uy (1) Q A Vvt i)

Uu(n) Uy (n+ ) Uu(n+2)7 U, (n)T A

Y Wilson gauge action in terms of sum over all plaquettes

SolU] = = 33" Re Tr[1 — Uy (n)

g neclA p<v

a4

Other complicated

gauge actions involve
=5 S‘ Tr[F,,(n)?] + O(a?) longer closed loops
g >y >y

nelA p<v



Wilson Loop and Confinement

Y Wilson loop (average)

W(C) = % tr U(C))

— Z_l(ﬁ)/HdUu(x)e_BS[U]Ntr U(C)
(R

T,

(R,0) " G(R)e q(R)Q

‘ | | propagation
Wilson Loop " of g-qbar state

|4>J ¢(0) © q(0) ®

(0,0) (0,T)

* For T>>R, W(C) related to energy of interaction of static (Wi Y)
quarks W(RxT) =e BoRT (T 55 R)



Yk Using strong-coupling expansion (expansion in 1/g2 or g)

plaguette average area of minimal surface
1 in leading order 3
W(dp) = (trU(0p)) Amin(C)=R X T

Y The area law:
W(C) — e 4minlC) (for large C)

* Potential energy is linear function of the distance between quarks

E(R)=0R

string tension (energy of string per unit length)



* o= iln&\% = iln(2Ng2) W (0p) =

a2 W a2

inverse of plagquette average for N > 3

2N?

Y Can you guess, what will be the average of plaquette

for SU(2) case ?

B =595 p =620
[ [ [ i IIIIIIIIII i IIIIIIIII 09
aVian) | ! |
I g B : . ol
1.0 — i e | _‘()_A=.<>="’°'=(>= | 08
LATTICE SPACING _ O N R R -
L o — 0.
CAN BE CALCULATED 08— % 1 2
. ® | I T — 06
FROM THIS FIG e 11
' | = | — 0.5
04 ] ] ] :I ] ] ] L1 1 1 | I: IIIIIIIII 04
2 4 6 8 2 4 6 8 10 12 14 16
n n
Example for evaluation of the static potential: linearly rising!

Y For Coulomb like potential one gets perimeter law
W(C) — e~ const-LC) (for large C) (no confinement)



Fuclidean Rotation

. d -
Minkowski space (2m) p? —m? + ie
t=—i171} @ E = —ip4 ) @

{Euclidean Euclidean}

ﬁ space space ﬂ

D o o — -
Minkowski J g Minkowski
space space

Y Passing into Euclidean variables

gl — ) :/(%f;deip<w>p2+m2 No ie prescription required

*Wick rotation: Switching from a (1,d)-spacetime quantum theory to a
(1+d)Euclidean quantum theory to compute observables and then switching back



| attice Formulation

Observables in lattice QCD are then expressed in terms of the path
1 integral as

— % HdU HCM Hd¢ e —(Sc[UI+SF[Uy,4])
n,

Integrate out the Grassmann variables:
1 B Importance
2_ (O) = o HdUM(n)O(U, G[U]@U]G SGDSampling
n, i

G(U,2,y)as = Wa(@)¥3()) = M (U) | Quark Propagator

Generate an ensemble of gauge configurations
P[U] o< det M[U]e~ <Y l

DESCRIBES THE ROLES OF
QUARK LOOPS
IN THE YVACUUM

Calculate observable

4. (O) = %ZO(U”,GU




What We Actually Measure on Lattice

. 1
* =Veiile[sEIaNOIOIICIEION (O2(1)01(0))r = Z—Ttr[ e~ (T=OH G, o~tH )]

(02(1)01(0))r = —— > (mle”T=DHOy|n) (n|e 7 O, |m)

* el AL =F, — E

T'— 00

lim <02(t)01(0)>T — Z < O’OAQ’”I% > < TL‘OAl‘O > e_tE”

kgl N0 0) = g [ Dlgle>r0sfe(. 0101 0. 0)

Integrand of the operators on LHS translated to functionals of the fields and then
weighted with Boltzman factor containing classical Euclidean action



Correlation Functions

Y Spin 1/2 interpolation fields

Xi(0x) = €t (aax)T1(aB)d(bBz)|Ts(67)u(cyr)
open Dirac index

Xi(0z) = —€ancu(cyz)T2(07)[d(bB2)T1 (aB)u’ (aaw)]

X1, X1 : I''=Cy and TIy=1
X2, X2 @ I'i'=C and TI'y=n;3

X3, Xz : L't =Cym and ['vy=1

Y The nucleon two-point correlation function is defined as:

Ganlt. 7 0) = 37 OIT (o) ¥alan) ) 0

X

Y x(x) annihilation(creation) interpolation field
a, 0 Dirac indices



% Insert complete sets S n,ds) (n,qs| =1

n)Q7S

Use Fourier transform >, e 797 = N6 -

Y Then nucleon two-point correlation function reads

Gos(t,D) = N 6(p— Qe T DT Englt=to

n7q78

(0l Xa(mo) In, 4, 5) (n, G, s| X(To) |0)

= R 0 ol ) (8 ) [

/ sum over n contains contribution
Number of lattice sites form positive and negative parity
excited-states
%  To obtain nucleon ground-state matrix element

we need to suppress these contributions



Excited-States Contaminations

Y Re-write two-point function as
Gas(t,p) = NZ( Bo™ (t=10) (0] xo(0) |0, 7, 5, +) {0, B, 5, +| Xs(0) |0)
e B =00) (0] 0 (20) |0, 7, 5, —) (0, 5, 5, —| X5(0) |0) )

. . . . . L (0,4)
0, p, s, +) is the positive-parity nucleon ground-state with energy e B

Y Taking trace with positive-parity projection operator Ty =T, = £

0+ E ’
FBaGaﬁ(t,ﬁ) _ 6’¢+‘2 (t—tg) P

_|_a6‘¢— ’2€—E2’_(t—to




* It one has %i < 1,

, E)t +mt
Ty [FGG(t, m] _ a6|gb+|2e_E2 +(t—to) p E()’_|_
p
e E, ~ (t—to) 1 ﬁ?
_a’6|¢ |2 0,— o —\2
Ey~  2(m7)

* For a final nucleon state at rest (p = 0),

GNN(taﬁa Fe) — TI[FGG(tvﬁ]
_ a6|¢8—|26—m+(t—t0)
Y Negative parity states are not completely suppressed unless

for zero nucleon momentum

Contamination exponentially suppressed in long time limit as
negative-parity ground-state has higher mass and energy
than positive-parity ground state.



Three-point Correlation Function

1. Connected Insertions: T

'Current connected to the nucleon |

2. Disconnected Insertions: A

Self contracted quark loop |
correlated with valence quarks
~In the nucleon propagator by |
fluctuating background gauge fields|




Schematic Representation

Yk Consider nucleon three-point correlator with

source momentum p
sink momentum p

Cot (6,730, 5) = (Xal(t, D) Oy(T)X5(0, 7))
% Insert operator with q—flavored L OCAL current
=) G(v)0% (v, w; §, T)gh(w)

Y, v, W

vk Positive-parity contracted three-point correlator
COUt,m;0,0") = TsalXalt,P)Oq(T)x5(0,5"))

= 3N T gy C5)25(15C ) po L

’y’U’UJ j’z

(ug, (T, us (T, )d5(, )33 () 0% (v, w, 7, 7) g (w)

aj (2, 0)d, (<, 0)ag (<, 0))




= _ 1

uud uu udu

1 M

uud uu udu uud uu udu
I S I =




An Example LQCD Calculation

(Strange Quark Electromagnetic Properties)
* Zel’dovich (1957). EM interaction with parity violation

< ~ €
> <P M) MP
- A p p

P £ Z e

* Kaplan, Manohar (88):

n 1 ) n n n n s
GEn (@) = ] [(1 —dsin® 0w)(1+ RYE)GRAT (@) — (L+ By EAP (@) — (1+ R$’>GE,M<Q2>]

* McKeown and Beck (89):
GrQ? 1
1/2ra [e(GE)? + 7(GP,)?]
x {(e(G2)2 + 7(G)?)(1 — 4sin® Oy ) (1 + RY)
— (eGGE + 7GGhy) (1 + RY)
— (eGB.G% + TGP, G5,) (1 + R(O))
—€(1— 4Sln29W>Gp G,

P _
APV__

_Unknown




Strange Quark Contribution

S - quark contribution arises from vacuum: sign and
magnitude related to nonperturbative structure of nucleon

Nonzero strange electric FF GSe at Q2> 0 implies different
spatial distribution of s and s quarks

Background in Qweak €xperiment arises from magnetization
of strange quark [strange magnetic FF G5z u]

G°e v (@2) essential for determination of neutral weak FFs

Experimental results (GO, HAPPEX, A4, SAMPLE) of G°cum
guite uncertain



Strange Quark Contribution

* Electromagnetic current C - odd

*Sensitive to difference between contributions from s and s

* Requires mechanisms beyond simple g— ss fluctuations

* Example: Meson-Baryon fluctuation: |N — KA fluctuation
+
(&W (us)l

A(uds)




Theory & Experiment: 65u (Q?)

RED: Analysis of world
expt. data

GREEN: Indirect
calculation

BLUE: Lattice QCD

Q2=0.1 GeV?, Mckewon, et.al.(07) o

A

. Q%=0.1 GeV2, Donnelly, et.al.(14)

+ Leinweber et al.(2000)
Leinweber et al. (05)
Shanahan et al. (15)
S. J. Dong et al.(98)

< Doi et al.chi QCD (09) 4 PR —
X Green et al. [16] . -

Quenched
Pion mass~ 600 MeV

Pion mass~315 MeV
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Parton Distribution Functions (PDFs)
Parton density function describes the probability to find a Parton of type

w_u

a” in a hadron “"A", carrying a momentum fraction £ of the hadron

3 free quarks in nucleon
PDF § -function

flz) ~o(x —1/3)

Interactions between quarks
with gluons exchange smears
the distribution

qq sea at small x

What would be the distribution for a point-like nucleon?




Parton Distribution Functions (PDFs)

wish the
nucleon

wave function _—A'S" Nonperturbative
were know !! ‘

PDFs

DIS Parton Picture
T :Bjorken-x v/s :Collision Energy
() :Momentum Transfer [ :Factorization Scale

Factorization scale u introduced. WHY 7



1
Teasx (x,Q°) = Z/O d€1d€ Gaya(&r, )Feasx (€2,Q%, w)d(z — &1€2) + Power corrections

1
:Z/ %¢a/A(§,u)&ea_>X(x/£,Q2,u)+ Power Correct'ons/

Problem: How is the related to do not properly factorize
Dl LI EVCE e RieRe R RO Rl /@NINOM:eXela] | Higher twist contribution

1. There are quantum corrections to this factorization for QCD

2. These quantum fluctuations can have arbitrary energy

3. Factorization in trouble if the energy of the virtual partonic
states of the same scale as the @Q?

4. Factorization scale p describes which fluctuations should be
included in the PDFs and which can be included in the hard
scattering part



Wilson Lines...

Properties

1. Hermiticity: ®!la,b; Al = ®_y[b,a; A]

2. Causality:| Path ordering can glue paths together
®,[b,c; A|®,|a,b,; A] = ®,]a, c; A].

3. Unitarity: @L[a, b; A|®,|a,b; Al = 1.

WHY WILSON LINE2?2

Asymptotic freedom states all higher order corrections
in perturbation theory should be small for hard particles

But the coupling strength is large if interactions are with soft particles.
In scattering experiments there are soft,i.e. low energy, gluon radiation.




Near threshold, large logarithms coming from soft radiation become
the leading corrections to scattering cross section

Interaction of a quark with a photon including
a gluon correction

1. It momentum of gluon small, internal quark propagator almost on—shell.

2. Can lead to large logarithmic corrections after the infrared
divergences are canceled.

3. This gluon radiation consists of an infinite number of soft gluons,
which would make perturbation theory an unusable method for computing
physical cross sections.



Y With some approximations all the soft radiations can be described

by a vacuum expectation value of a single path ordered exponential

Pez’g J dzu AL (2)ta

% Path described by 2z,
Classical paths of the parton that emits and absorbs gluons

v Wilson lines describe only soft gluons. So to use the Wilson lines

we have to separate the soft gluons, which we describe by the
Wilson line, from the hard gluons, whose contributions can be
calculated using ordinary perturbation theory.



Unrenormalized quark distribution

(0) ! — —iaPiy" L . B} )
f]/A(ZC) - 47-(- /dy € - X<P+7 OTIwO,j(an—aOT)W_FwO,j(OaO?OT)‘P—I_? OT>

operator is not local but bi-local

Problem: +- why?

(0,y~,07) and (0,0, 0r)

The gauge-invariant definition is

1 _ - S S ;
fia(@) = pp /diy eV (PT,Orttg (0,5, 00)y T O 100,5(0,0,07) P, 0r)

-
Oy = Pexp (igO/ dz~ A({a(o, 2=, 07) ta>

0

—

Re-write  Op =Pexp <—igo dz~ Ag ,(0,27,07) ta) |
Yy~ Insert here

P exp (igo/ ds— Aéa(O,z‘,ﬁT)ta) ~and also complete sets
0 ’ between two exponentials



DIS Parton distribution

A virtual photon knocks out a quark, [lustrates the amplitude associated with

h' 5 5 . . . c .
which emerges moving in the minus the quark distribution function

direction and develops into a jet of particles.

quark distribution function including a sum over intermediate states ‘N>

1 rdy

fin&me) = 5 [ 5 e 20l 0.y, 0)y" B N) (NERAO)ID)

Operator ¥; annihilates a quark in the nucleon



Fi = Pexp (—ig /Oodz_A;“(O,z_,O) ta)
0

F stands in for the quark moving

in the o direction.

Parton distribution

* The gluon field A evaluated along a lightlike line in oz direction absorbs

longitudinally polarized gluons from the color field of the proton

* Thus the physics of deeply inelastic scattering 1s built into the definition

of the quark distribution function



A quark moving in the plus direction is struck
and exits to infinity with almost the speed of light in the minus direction

i xt

As 1t goes, the struck quark interacts with

the gluon field of the hadron.

We can now see that the role of the operator O
is to replace the struck quark with a fixed color
charge that moves along a light-like line in the
minus-direction, mimicking the motion of the ac-
tual struck quark in a real experiment.



L attice QCD Calculations of PDFs

What are Good Lattice “Cross Sections” (LCSs)

Single hadron matrix elements: Ma & Qiu
PRL (2018)

1. Calculable using lattice QCD with Euclidean time

2. Well defined continuum Iimit (a — 0), UV finite

3. Share the same perturbative collinear divergences with PDFs

4. Factorizable to PDFs with IR-safe hard coefficients
with controllable power corrections



|_attice Calculable + Renormalizable + Factorizable

erturbatively Calculable
Hard Coefficients

Factorization holds for any finite w and P?¢2
if & 1s short distance



Yk Hadron matrix elements: o, (w, &2, P?) = (P|T{0,(€)}|P)

w=PFP-§, 52#09 & =0

* Current-current correlators

Oj,52(€) = 4174272 71 77151 (€) 42(0)

d; : Dimension of the current
Zj . Renormalization constant of the current

Zj already known for the lattice ensembles being used
vk Different choices of currents

jS(g)zfzz_ ¢ wq]( Jv(§) = fZ q“{ &pq] £),
v(€) = €20 W - €U (©),  a(6) - BB (©)

flavor changing current gluon distribution




Example Lattice Setup for Pion Using LCSs

Challenges and Questions

Momentum
projection

Momentum
projection

’E\—O
S~

Momentum conservation

(2,T)

(=)0, (20)O 1, (§)[IL(—p)) =
= ) P PYGTr (2, T) 4 J2 qlwo + €, 1) §J1 q(x0,t) 4T (y, 0))

Y2
— Z 6i(p’,z—p.y)tr[J2 D_l(f[]o i f; t: T, t) Ji D_l(wo, t:y, O) Ty
Y2

XD_l(y, O, 2y T)FH D_l(za T7 Zo + 57 t)]a

* Pion computationally less demanding than nucleon
Numerical Challenge . But signal-to-noise ratio is a problem

6—m7rt

C =(t,p) — { o~ (3ma /2)t

Mesons
Baryons



High spatial momentum and lattice systematics

position space momentum space

s 7o) Boosted interpolating operators

A

x Re e‘"f, s fipk)

AVA\}/ \U(\V,\ . A

k

Bali ef al., Phys. Rev. D 93,
094515 (2016)

convertional smeanng

L

mome rtum smearing

Inverse Problem - common to all LQCD approaches
(w0, €2, P?) = Z/ L ol 1) K 0, €, 27 P2, 12) + O(€ o)

Calculate on Extract Calculate in
L attice PDF PQCD



Y Momentum space matrix elements

dé* .
éezq'gan(w,g,PZ)

Op = Zfa, & f(gj + O(AQQCD/QQ)

on(@,q%, P?) =

) ¢ Requires many different LSCs with different currents

Y x-dependence of pion valence distribution can be
obtained from & =1/x

* Low-x is not accessible unless the hadron is moving very fast
(common problem to all LQCD approach)




Questions: Pion Valence Distribution

Large-x behavior of pion valence distribution an unresolved problem

% Perturbative QCD, Dyson-Schwinger model (1 — x)* fall-off
* Nambu-Jona-Lasino (NJL) model, Duality arguments (1 — x)l fall-off

0.5

== NNPDF3.0 w,

0.0 mmmm MMHT2014
CT14

Emm FHQCD (NNLO)

B [FHQCD (NLO) == WRH2005
----- LFHQCD (NNLO) ---- ASV2010
i ¢ Conway et al.

Light-Front

u? = 27 GeV?

%0'4 §? =10 GeV? Holographic
= QCD

10 10° 102 100 100 %0 02 04 06 08 10
X X
de Téramond, Liu, RSS,Dosch, Brodsky, Deur
PRL (2018)

* Lattice QCD can play vital role in understanding large x-behavior



Quasi Parton Distributions on the Lattice
Y Quasi PDFs (X. Ji, PRL (2013))

| orentz Invariance

dz .
gz, N, p,) = | —e "*?P- broken
Q(x, 7p) 27T€
1 < _
h(z,pz) — E Z <p, S’ ¢(2)7a6%gf0 Az (2")dz w(o) |p7 S>

s=1

* A is an UV cut-off scale, such as the inverse lattice spacing 1/a

Y DBecause p is finite, = can be larger than unity.

(Convince yourself from the above expression)

* Quasi-PDF calculated at finite momentum on the lattice has

proposed matching

N 1 g A A? M? . :
q(z, A, p.) :/ i iy (f,ﬁ,—) q(y, Q%) +(’)< QSD, - ) Z 1s a matching kernel
—1 |y| Y Pz Dz M2=Q2

Power-law UV divergence from Wilson line in the non-local operator

grows as z/a



Quasi-Distribution of Pion

m,. ~ 300 MeV LP3, arXiv:1804.01483
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FIG. 6: Top: Comparison of unpolarized PDF from the B55
ensemble against phenomenological estimates. Notation as in
Fig. 4. Bottom: Comparison of unpolarized PDF between
results of this work (blue band) and of the B55 ensemble
(orange band) at nucleon momentum ~1.4 GeV.,
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» @l Pseudo-PDFs (A. Radyushkin, PLB (2017))

h(v,2?) = h(z,p,)

Lorentz invariant loffe time v = 2 - p

* The pseudo-PDF is then defined by the Fourier transform

Pz, 2°) = ;Z—Ze_m”ﬁ(u, 2?)
*
h(v, 2?)
M(v,2%) = =
SN

v loffe time PDF  M(y,2°%) = Q(v, u*) + O(2?)

q(z, 1?) = @e—iva(% 1%) Inverse problem again

2T



Hadronic Tensor Method (K. F. Liu, PRL 1994, PRD 200))

The definition of hadronic tensor in the Minkowski space 1s

1 Structure function
Wi g’ v) = — | d*ze"(plJ} ()T, (0)P)spin ave. j
in calculation

1 L 4> p;
- EZ f ]‘[[ P ]<N|J,1<0)|n><n|fv<0>|N>spm ave.2m)’ 64 (P — p — @).
n i=1

2n)32E,,;

Cs(P,q,7) = Z e PN N TR (v (R, 1) (R, 1) T, (R 1)iew (0, 1)),
. ff )?2)?1
Euclidean - }
Co(B,7) = ) &P Gen (R, 1w (G, 10)),

9
Xf
ity ENTHC.Ca(P, G, T)]
W(p—)q)T)f 2L1 0 N e 4p9Q’
P - JN
myTr[I'.Co(p, 7)]
t1 to t1 to t t2
t@
to t to t
(a) valence and connected sea parton (b) connected sea anti-parton (c) disconnected sea parton and
q(V+CS) g(CS) anti-parton g(DS) and g(DS)
to
: 8, O
(d) suppressed by O(1/ Q2) (e) suppressed by O(1/ Qz)

Figure 1. Topologically distinct diagrams in the Euclidean-path integral formulation.



Other methods.........

Inversion Method Through Compton Amplitude
(A. Chambers, et al PRL (2017))

* Position-space correlators V. M. Braun & D. Muller (2008) )



0.7

321D — v

v One LQCD (+ LaMET) example: - . —e— |
Sr 321 —e— |
First moment of gluon helicity distribution g o4 ? | .
& 0.3 [
5 i [dE e O-Qﬁ:?:ﬁ\"%
AG—/dxszjL/ge F o.;-l , . .
X (PS|F%(&7) L™ (6, 0)F ;4 (0)|PS) T new

* On the lattice Yang, RSS, et .al
5, =2 / PXTr(E, x A,) PRL 2017

Glue Spin and Helicity in the Proton from Lattice QCD

Y Matching to LaMET

Sc (1P|, p) = [1 . ?26(7?21 G log </]j2)2 _ 10.2098)] AG (1) AG 1s 0.22, which 1s much smaller than unity
+ 4k (Groe p - 52627 ) g Convergence problem !
+0<g4)+0((£)2)- (10) But promising result as the

first Calculation
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Singularities and Wilson Lines...

Define pi + p5 = k* " :
: % 3

Simple | e

e k™ large and ky = 0. q

Algebra k= = pgf | pgf P2
2p] 2p3

Two cases

Y p3.r becomes small with fixed p;” and p3

Gluon momentum 1s nearly collinear with the quark momentum.

P37 and p3 both become small with pi o |ps. 7
3 3 ,

So that the gluon momentum 1s soft.



current conservation at the nucleon vertex requires that ¢,J* = 0,

1 ,
qu " = ap) | B g+ igrFague” ¢ + ¢ F3| u(p) =0

= F3=0
The first term can be shown to vanish by applying the Dirac equation to the spinors

The second term is zero because o*” is totally antisymmetric, while

leaving ¢“F5 = 0.



m General definition of the nucleon form factor
(N(P")|Jgp (0)|N(P)) =
a(P') [7HEN (Q2) + iohv i N (Q2)] u(P)

IV = K7+ iKy0"(p' — p)a + iK50"(p' + p)a +
K4(p' — p)V + K5(p/ T p)v

Term proportional to »* + p*

absorbed into a combination of the terms proportional to v* and o"”(p/, — p,)
term proportional to o*(p/, + p,) can be absorbed into the p'* — p* term

leaving three independent form tactors and the following expression for the vertex tactor

. F2 p/I/ _pl/
FV — F 1% o~ Vo o F
17 +22MO Qo + I'3 7




QCP Beta Function

dog

T3 = Bas) = —(bga? + brad + boas + - - )
KR

bR
bo — (110A — 4nfTR)/(127r) = (33 — an)/(127r)

b1 = (17C% — nsTR(10C4 + 6CF))/(2472)

as(puh) = (bo In(uk/A%)

perturbatively defined coping diverges at this scale



1 Light Cone Coordinates: Definitions, Identities

A four-vector is not bold-faced (e.g. p, k), a three-vector is bold-faced
with a vector symbol (e.g. P, E), and a transverse two-vector is bold-faced
without a vector symbol (e.g. p, k). Minkowski four-vectors are written
with parentheses, (); light-cone four-vectors with brackets, [].

p=®",p",p) =[p*,p",pl. (1)

We will use non-symmetrized lightcone coordinates:

pt =p’ +p° (2)
p~ =p’ —p° (3)
P = p. (4)

The inverse transformation is then

pO:%(ﬁ*ﬂ? ) (5)
b= 5" —p) ©
P = p. (7)

The Minkowski dot product in lightcone coordinates is:
1 _ _
p-k=pk" —pk*—p-k=c(p"k +p k") -p-k (8)
The length of a vector using lightcone coordinates is then:

p-p=p p —p-p (9)



The probability for an initial state splitting 1s proportional to ds.

Using null plane components, the covariant square of p* is
p* =2p*p” —p7.

Thus, for a particle on its mass shell, p~ is

p + m?

2pT

p:

Note also that, for a particle on its mass shell,

p+



Integration over the mass shell is

d*p
2 —3/ coe= (2 —3/2
(2m) 24/p? + m? (2m) @pr 0o 2pt

(24)

We also use the plus/minus components to describe a space-time point x#: 2% = (24
23)/v/2. In describing a system of particles moving with large momentum in the plus direc-
tion, we are invited to think of ™ as “time.” Classically, the particles in our system follow
paths nearly parallel to the 2T axis, evolving slowly as it moves from one ™ = const. plane
to another.

We relate momentum space to position space for a quantum system by Fourier trans-
forming. In doing so, we have a factor exp(ip - x), which has the form

p-x=pz +pat —pr- xr. (25)

Thus z~ is conjugate to p™ and x™ is conjugate to p~. That is a little confusing, but it is
simple enough.



P1 X= X+
%4% P3 /

0

P2

Figure 5: Correspondence between singularities in momentum space and the development
of the system in space-time.

2.4 Space-time picture of the singularities

We now return to the singularity structure of ete™ — ¢gg. Define p| + p§ = k*. Choose
null plane coordinates with &% large and ky = 0. Then k? = 2kTk~ becomes small when

Pg,,T
2p3

2
P37

L= —
2p7

+ (26)
becomes small. This happens when p3r becomes small with fixed p{” and p3, so that the
gluon momentum is nearly collinear with the quark momentum. It also happens when ps
and p3 both become small with p3 o |ps 7|, so that the gluon momentum is soft. ( It also
happens when the quark becomes soft, but there is a numerator factor that cancels the soft
quark singularity.) Thus the singularities for a soft or collinear gluon correspond to small
k™.

Now consider the Fourier transform to coordinate space. The quark propagator in Fig. 5
s

Sp(k) = / dz*dz—dx exp(ifkTz~ + k~z" — k - x]) Sp(z). (27)

When k7 is large and &k~ is small, the contributing values of x have small 2~ and large x™.
Thus the propagation of the virtual quark can be pictured in space-time as in Fig. 5. The
quark propagates a long distance in the ™ direction before decaying into a quark-gluon pair.
That is, the singularities that can lead to divergent perturbative cross sections arise from
interactions that happen a long time after the creation of the initial quark-antiquark pair.



There are three ways to view this result. First, we have the formal argument given
above. Second, we have the intuitive understanding that after the initial quarks and gluons
are created in a time At of order 1/4/s, something will happen with probability 1. Exactly
what happens is long-time physics, but we don’t care about it since we sum over all the
possibilities |NV). Third, we can calculate at some finite order of perturbation theory. Then
we see infrared infinities at various stages of the calculations, but we find that the infinities
cancel between real gluon emission graphs and virtual gluon graphs. An example is shown
in Fig. 7.

Figure 7: Cancellation between real and virtual gluon graphs. If we integrate the real gluon
graph on the left times the complex conjugate of the similar graph with the gluon attached
to the antiquark, we will get an infrared infinity. However the virtual gluon graph on the
right times the complex conjugate of the Born graph is also divergent, as is the Born graph
times the complex conjugate of the virtual gluon graph. Adding everything together, the
infrared infinities cancel.



We see that the total cross section is free of sensitivity to long-time physics. If the total
cross section were all you could look at, QCD physics would be a little boring. Fortunately,
there are other quantities that are not sensitive to infrared effects. They are called infrared
safe quantities.

We see that the total cross section is free of sensitivity to long-time physics. If the total
cross section were all you could look at, QCD physics would be a little boring. Fortunately,
there are other quantities that are not sensitive to infrared effects. They are called infrared
safe quantities.

To formulate the concept of infrared safety, consider a measured quantity that is con-
structed from the cross sections,

do|n]

2
dQodE3dS)3 - - - dE,dQ, (29)

to make n hadrons in e"e” annihilation. Here E; is the energy of the jth hadron and
(2; = (05, ¢;) describes its direction. We treat the hadrons as effectively massless and do not

Y -

Figure 8: Infrared safety. In an infrared safe measurement, the three jet event shown on the
left should be (approximately) equivalent to an ideal three jet event shown on the right.







