Strange Quark Contributions to Nucleon Structure?
Results from the Forward G00 Experiment

Goals of G0 Experiment:

• Determine Q^2 dependence of a combination of G_E^s and G_M^s over range $0.1 \leq Q^2 \leq 1.0 \text{ GeV}^2$

• Determine G_E^s and G_M^s separately for 3 specific Q^2 values
Results from the Forward G0 Experiment

Outline

• Quark flavor contributions from parity-violating electron scattering

• Experimental setup

• Analysis

• G0 results

• Combination with SAMPLE, HAPPEX, PVA4 measurements
G0 Collaboration

¹College of William and Mary, ²Institut de Physique Nucléaire d’Orsay, ³Yerevan Physics Institute, ⁴Laboratoire de Physique Subatomique et de Cosmologie-Grenoble, ⁵University of Illinois, ⁶University of Maryland, ⁷Thomas Jefferson National Accelerator Facility, ⁸University of Manitoba, ⁹Carnegie Mellon University, ¹⁰California Institute of Technology, ¹¹University of Kentucky, ¹²TRIUMF, ¹³Louisiana Tech University, ¹⁴Virginia Tech, ¹⁵University of Northern British Columbia, ¹⁶New Mexico State University, ¹⁷University of Winnipeg, ¹⁸Hampton University, ¹⁹Grinnell College
Quark flavor contributions and parity-violating electron scattering
Quark Currents in the Nucleon

- Measure $G_{\gamma,p}^Z, G_{\gamma,n}^Z, G_{\gamma,n}^Z$:
 \[
 G \sim \langle N | \sum_i e_i \bar{q}_i \Gamma_{\mu} q_i | N \rangle
 \]

 - e.g.
 \[
 G_{E,M}^{\gamma,p} = \frac{2}{3} G_{E,M}^{u,p} - \frac{1}{3} \left(G_{E,M}^{d,p} + G_{E,M}^{s,p} \right)
 \]

 - note
 \[
 \begin{aligned}
 G_{E,M}^{u,p} &= G_{E,M}^{d,n} \\
 G_{E,M}^{d,p} &= G_{E,M}^{u,n} \\
 G_{E,M}^{s,p} &= G_{E,M}^{s,n}
 \end{aligned}
 \]
 charge symmetry

 (see G. A. Miller PRC 57 (98) 1492.)

then

\[
\begin{aligned}
G_{E,M}^{u} &= \left(3 - 4 \sin^2 \theta_W \right) G_{E,M}^{\gamma,p} - G_{E,M}^{Z,p} \\
G_{E,M}^{d} &= \left(2 - 4 \sin^2 \theta_W \right) G_{E,M}^{\gamma,p} + G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p} \\
G_{E,M}^{s} &= \left(1 - 4 \sin^2 \theta_W \right) G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}
\end{aligned}
\]

dropping the p superscripts on the left.
Parity-Violating Electron Scattering

- $G^{Z,p}$ contributes to electron scattering

\[
\sigma \propto \left| M^\gamma + M^Z \right|^2
\]

- interference term: **large** $M^\gamma \times \text{small} \ M^Z$

- Interference term violates parity: use (\bar{e}, e')

\[
A^{pv} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{A_E + A_M + A_A}{\epsilon(G_E^\gamma)^2 + \tau(G_M^\gamma)^2}
\]

where

\[
A_E = \epsilon(\theta) G_E^\gamma G_Z^Z, \quad A_M = \tau G_M^\gamma G_M^Z
\]
\[
A_A = -\left(1 - 4\sin^2 \theta_W\right) \epsilon'(\theta) G_M^\gamma G_A^e
\]

\[
\epsilon(\theta) = \left[1 + 2(1 + \tau)\tan^2(\theta/2)\right]^{-1},
\]
\[
\tau = \frac{Q^2}{4M_p^2},
\]
\[
\epsilon'(\theta) = \sqrt{\tau(1 + \tau)(1 - \epsilon^2)}
\]
Summary of PV Electron Scattering Experiments

<table>
<thead>
<tr>
<th>Lab/Expt</th>
<th>target</th>
<th>Q^2 GeV2</th>
<th>A_{phys} ppm</th>
<th>Sensitivity</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT-Bates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SAMPLE</td>
<td>H_2</td>
<td>0.10</td>
<td>8.0</td>
<td>$\mu_s + 0.4 G_A^Z$</td>
<td>published</td>
</tr>
<tr>
<td>- SAMPLE-II</td>
<td>D_2</td>
<td>0.10</td>
<td>8.0</td>
<td>$\mu_s + 2.0 G_A^Z$</td>
<td>published</td>
</tr>
<tr>
<td>- SAMPLE-III</td>
<td>D_2</td>
<td>0.04</td>
<td>3.0</td>
<td>$\mu_s + 3.0 G_A^Z$</td>
<td>published</td>
</tr>
<tr>
<td>JLab Hall A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HAPPEX</td>
<td>H_2</td>
<td>0.47</td>
<td>15.0</td>
<td>$G_E^s + 0.39 G_M^s$</td>
<td>published</td>
</tr>
<tr>
<td>- HAPPEXII</td>
<td>H_2</td>
<td>0.11</td>
<td>1.5</td>
<td>$P_S + \mu p H_S$</td>
<td>publishing, running</td>
</tr>
<tr>
<td>- Helium-4</td>
<td>4He</td>
<td>0.11</td>
<td>10.0</td>
<td>P_S</td>
<td>publishing, running</td>
</tr>
<tr>
<td>- Helium-4</td>
<td>4He</td>
<td>0.60</td>
<td>50.0</td>
<td>G_E^s</td>
<td>unscheduled</td>
</tr>
<tr>
<td>- Lead-208</td>
<td>208Pb</td>
<td>0.01</td>
<td>0.5</td>
<td>neutron skin</td>
<td>2006</td>
</tr>
<tr>
<td>Mainz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A4</td>
<td>H_2D_2</td>
<td>0.1-0.25</td>
<td>1.0-10.0</td>
<td>G_E^s, G_M^s</td>
<td>published x2, running</td>
</tr>
<tr>
<td>Jlab Hall C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- G0</td>
<td>H_2D_2</td>
<td>0.1-1.0</td>
<td>1.0-30.0</td>
<td>G_E^s, G_M^s</td>
<td>publishing, running</td>
</tr>
<tr>
<td>- Qweak</td>
<td>H_2</td>
<td>0.03</td>
<td>0.3</td>
<td>Qw</td>
<td>2006</td>
</tr>
<tr>
<td>SLAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- E158</td>
<td>H_2</td>
<td>0.02</td>
<td>0.2</td>
<td>Qw</td>
<td>published</td>
</tr>
</tbody>
</table>

K. Kumar

DHB, 17 June 2005
Experimental setup
G0 Experiment Overview

- Measure G_E^Z, G_M^Z
 - different linear combination of u, d and s contributions than e.m. form factors
 \rightarrow strange quark contributions to sea

- Measure forward and backward asymmetries
 - recoil protons for forward measurement
 - electrons for backward measurements
 - elastic/inelastic for 1H, elastic for 2H

- Forward measurements complete (101 Coulombs)

$E_{\text{beam}} = 3.03 \text{ GeV}, 0.33 - 0.93 \text{ GeV}$
$I_{\text{beam}} = 40 \mu\text{A}, 80 \mu\text{A}$
$P_{\text{beam}} = 75\%, 80\%$
$\theta = 52 - 76^0, 104 - 116^0$
$\Delta \Omega = 0.9 \text{ sr}, 0.5 \text{ sr}$
$l_{\text{target}} = 20 \text{ cm}$
$L = 2.1, 4.2 \times 10^{38} \text{ cm}^{-2} \text{ s}^{-1}$
$A \sim -1 \text{ to } -50 \text{ ppm}, -12 \text{ to } -70 \text{ ppm}$
G0 in Hall C

- Superconducting magnet (SMS)
- Beam monitoring girder
- Cryogenic supply
- Scintillation detectors
- Cryogenic target ‘service module’
- Electron beamline
Polarized Injector/Accelerator

- Challenging specifications – all met!
 - 32 ns pulse spacing for t.o.f.
 - 40 µA beam current
 - higher bunch charge
 - run concurrently with small energy spread for Hall A

<table>
<thead>
<tr>
<th>Beam Parameter</th>
<th>Achieved</th>
<th>“Specs”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge asymmetry</td>
<td>-0.14 ± 0.32 ppm</td>
<td>1 ppm</td>
</tr>
<tr>
<td>x position differences</td>
<td>3 ± 4 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>y position differences</td>
<td>4 ± 4 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>x angle differences</td>
<td>1 ± 1 nrad</td>
<td>2 nrad</td>
</tr>
<tr>
<td>y angle differences</td>
<td>1.5 ± 1 nrad</td>
<td>2 nrad</td>
</tr>
<tr>
<td>Energy differences</td>
<td>29 ± 4 eV</td>
<td>75 eV</td>
</tr>
</tbody>
</table>

New Tiger laser system for G0

JLab polarized injector

DHB, 17 June 2005
Leakage Beam Measurement

- Use “cut0” region in actual data to measure leakage yield, asymmetry throughout run
- Cut0 certified during test runs with only leakage beam
 - uncertainty determined in 3 ways
 - compare lumi monitor (direct) measurements to cut0
 - cut3 asymmetry independent of beam current (10, 20, 40 µA)
 - variation of corrected cut3 asymmetry (should be constant over run)
 - methods consistent at 20% level
- $\delta A_{\text{false,leak}} = -0.71 \pm 0.14$ ppm

<table>
<thead>
<tr>
<th>I (µA)</th>
<th>$A_{3,\text{meas}}$ (ppm)</th>
<th>$A_{3,\text{corr}}$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.14±0.43</td>
<td>-2.5±0.43</td>
</tr>
<tr>
<td>20</td>
<td>-29.6±2.1</td>
<td>-7.2±2.1</td>
</tr>
<tr>
<td>10</td>
<td>-51.3±3.9</td>
<td>-9.5±3.9</td>
</tr>
</tbody>
</table>

DHB, 17 June 2005
Beam Polarization

- Beam polarization measured with interleaved Møller measurements
 - std Hall C polarimeter (M. Hauger, et al. NIM A462 (2001) 382.)
 - apply for groups of runs as shown
 - average: P = 73.7%

<table>
<thead>
<tr>
<th>Source</th>
<th>Rel. uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>0.42</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.2</td>
</tr>
<tr>
<td>Current extrap’n</td>
<td>1</td>
</tr>
<tr>
<td>Beam</td>
<td>0.52</td>
</tr>
<tr>
<td>Levchuk</td>
<td>0.3</td>
</tr>
<tr>
<td>Detection</td>
<td>0.35</td>
</tr>
<tr>
<td>Total</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Timing in the Experiment

Accelerator pulse structure

Beam Helicity
+1 -1

“Quartet” Helicity + - - + or - + + - (random)

“Macropulse”

1/30 s ~500 µs

Measurement timing

Typical t.o.f. spectrum

Det 8

DHB, 17 June 2005
• 20 cm LH$_2$, aluminum target cell
• longitudinal flow, $v \sim 8$ m/s, $P > 1000$ W!
• negligible density change < 1.5%
• measured small boiling contribution
 – 260 ppm/1200 ppm statistical width
Spectrometer Optics

- zero magnification along beam axis
- elastic protons dispersed in Q^2 along focal surface
- acceptance $0.12 < Q^2 < 1.0 \text{ GeV}^2$ for 3 GeV incident beam
- detector 15 acceptance: 0.44 – 0.88 GeV2
 - 3 Q^2 bins at 0.51, 0.63 and 0.78 GeV2
- detector 14: $Q^2 = 0.41, 1.0 \text{ GeV}^2$
- det. 16: no elastic acceptance
 - important for measuring backgrounds
Detectors

- 16 detectors per octant
- Arc shape (const. Q^2), protons at normal incidence

- Each detector: scintillator pair
 - BC408: 0.5, 1.0 cm thick
 - 1/8 in. shielding in-between

- PMT at each end of each scintillator
 - XP2262B (NA), XP2282B (Fr)

- Signal: mean-time-front .AND. mean-time-back

- Assembled with ~ 2 mm accuracy
- Octants in light-tight enclosures
Electronics

- Measure time-of-flight target to detectors
- Counting rates ≤ 4 MHz per scintillator pair
- Fast time encoding
 - NA: dual 500 MHz shift registers \rightarrow scalers (1 ns resolution)
 - “latching time digitizer” (LTD)
 - Fr: flash TDC \rightarrow DSP \rightarrow scalers (1/4 ns resolution)
Electronics Deadtime Corrections

• Residual effect on asymmetry
 – scale factor
 \[A_{\text{meas}} = \frac{R_+ (1 - \tau R_+) - R_- (1 - \tau R_-)}{R_+ (1 - \tau R_+) + R_- (1 - \tau R_-)} \]
 \[\approx A \left(1 - \tau \frac{R_+ + R_-}{2} \right) \]

• A is sum of physics and charge asymmetries
 – helicity-correlated beam current changes corrected in linear regression analysis
 – correction for residual effect \(\sim 0.05 \pm 0.05 \text{ ppm} \) (pt-pt systematic unc.)
Analysis
Analysis Overview

- Blinding Factor
 - Raw Asymmetries, A_{meas}
 - "Beam" corrections:
 - Leakage beam asymmetry
 - Helicity-correlated beam properties
 - Deadtime
 - Beam polarization
 - Background correction
 - Unblinding
 - A_{phys}
 - Q^2
 - Elastic form factors
 - $G_E^s + \eta G_M^s$
Forward Data Summary

• 101 Coulombs of parity-quality beam
 – cuts on helicity-correlated beam parameter are
 4 x std. dev. for given run:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge asymmetry</td>
<td>600 ppm</td>
</tr>
<tr>
<td>x, y position differences</td>
<td>8, 10 μm</td>
</tr>
<tr>
<td>x, y angle difference</td>
<td>0.6, 1.1 μrad</td>
</tr>
<tr>
<td>energy difference</td>
<td>7.5 keV</td>
</tr>
</tbody>
</table>

• Includes running with both Hall A and Hall B (leakage beam asymmetry measured satisfactorily)

• Corresponds to: 701 h at 40 μA
 19 x 10^6 quartets
 76 x 10^6 MPS
Statistical Properties of the Data

- Asymmetry distributions very clean over range of 10^5

- Measured and expected widths agree at few % level
Helicity-Correlated Beam Parameters

- Response of spectrometer to beam changes well understood
- Average helicity-correlated beam parameters very small
- False asymmetries due to helicity-correlated beam parameters very small
 - overall about -0.02 ppm
 - largest is 0.01 ppm from residual charge asymmetry
 - uncertainties small as well: 0.01 ppm
Background Overview

- Measure yield and asymmetry of entire spectrum
- Correct asymmetry according to

\[A_{\text{meas}} = (1 - f) A_{\text{el}} + f A_{\text{back}} \]

where \(A_{\text{el}} \) is the raw elastic asymmetry,

\[f = \frac{Y_{\text{back}}}{Y_{\text{meas}}} \]

- Actual analysis: \(f = f(t) \)
 - det. 1-14
 - fit \(Y_{\text{back}} \) (poly\(^4\) of degree 4), Gaussian for elastic peak
 - then fit \(A_{\text{back}} \) (poly\(^2\) of degree 2), constant \(A_{\text{el}} \)
 - det. 15
 - interpolate over detectors for \(Y_{\text{back}}, A_{\text{back}} \)
 - fit 3 constants for \(A_{\text{el}} \)
Det 1-14 Background

• Results of 2-step fitting procedure: det 8
 – fit Y_{back} (poly' of degree 4), Gaussian for elastic peak
 – then fit A_{back} (poly' of degree 2), constant A_{el}
 – example fits
 • yield: $\chi^2 = 31.1/40$
 • asym: $\chi^2 = 37.5/44$
 – f determined from Y_{back}, Y_{meas} in subsequent analysis
 • don’t use detailed shape of elastic peak

• Det 14 similar except it has 2 elastic peaks
 – $Q^2 = 0.41, 1.0 \text{ GeV}^2$
Det. 1-14 Background Uncertainty

• Statistical uncertainty includes that from A_{el} and from A_{back}

\[A_{meas} = (1 - f)A_{el} + fA_{back} \]

• Systematic uncertainty: general philosophy
 – vary background yield and asymmetry over plausible ranges
 – consider distributions of results for A_{el}
 • unweighted
 • weighted by χ^2
 • systematic uncertainty is average of std. dev. of these two distributions
Det. 1-14 Background Uncertainty

- Background yield varied within “lozenge”
 - use a variety of shapes

- Similar approach for asymmetry
 - vary throughout range
Correlations in Det 1-14 Backgrounds

• Separate point-to-point (pt-pt) uncertainties in background correction from global uncertainties
 – e.g. changing from linear to quadratic model for background asymmetry changes all det.1 -14 asymmetries downward on average

• Again using the distributions of results for A_{el}
 – calculate ~ correlation coefficient
 – correlated uncertainty is change in centroid of distribution for given background model compared to width of overall distribution (\equiv total systematic uncertainty)

• For det. 1-14

$$\Delta^2 A_{el,sys} = \Delta^2 A_{el,pt-pt} + \Delta^2 A_{el,lob}$$

$$\Delta^2 A_{el,pt-pt} = \frac{1}{4} \Delta^2 A_{el,sys}$$

$$\Delta^2 A_{el,lob} = \frac{3}{4} \Delta^2 A_{el,sys}$$
Det. 15 Background Yields

- Elastic protons shifted to lower t.o.f.
- Elastic peak broadened because of increased Q^2 acceptance
- Interpolate over detector range 12-14, 16
 - take out changing acceptance first
Positive Background Asymmetries

- Det. 12-16 see smoothly varying peak in background asymmetries
 - maximum magnitude ~ +45 ppm

- Source is protons from hyperon weak decay scattering inside spectrometer
 - GEANT simulation with generator for hyperon production based on CLAS data
 - simulate both Λ and $\Sigma^{+,0}$ decays
 - Λ polarization transfer 100%
 - $\Sigma^{+,0}$ asymmetry scaled by further factor of -1/3 (CG coefficient)
 - simulation explains source; use measured data for actual analysis
Positive Background Asymmetries: GEANT

DHB, 17 June 2005
Det. 15 Background Asymmetry

• Use smoothed interpolation of A_{back} from det. 12-14, 16
• Uncertainties are ± 1 detector AND ± 0.5 ns time shift
Det. 15 Asymmetry

- Compare interpolated background asymmetry and data
Correlations in Det. 15 Backgrounds

- Separate point-to-point (pt-pt) uncertainties in background correction from global uncertainties
 - in det. 15, correlations larger because bins are contiguous

- Consider distributions of results for A_{el}
 - for variety of randomly generated models determine correlation coefficient

- For det. 15

\[
\Delta^2 A_{el,sys} = \Delta^2 A_{el,pt-pt} + \Delta^2 A_{el,glob}
\]
\[
\Delta^2 A_{el,pt-pt} = \frac{1}{2} \Delta^2 A_{el,sys}
\]
\[
\Delta^2 A_{el,glob} = \frac{1}{2} \Delta^2 A_{el,sys}
\]
Dilution factor and Background Asymmetry

- Smooth, systematic progression
 - dilution factor
 - background asymmetry
 - both averaged over t.o.f.
 for demonstration

DHB, 17 June 2005
G0 results
Where Were We?

- From HAPPEX H preprint nucl-ex/0506011

![Graph showing data points and error bars with labels for different experiments: MAMI A4, MAMI A4, HAPPEX-I, and HAPPEX-II. The x-axis represents $Q^2 (GeV^2)$ and the y-axis represents a function involving G_E, G_M, and $\eta(Q^2, E_i)$. The graph includes data points and error bars for each experiment, indicating variations in the measured values.](image-url)
Experimental Results

- \(A_{\text{phys}} \) corrected for all beam, electronics, background factors

<table>
<thead>
<tr>
<th>Det</th>
<th>(Q^2) (GeV(^2))</th>
<th>(A_{\text{phys}}) (ppm)</th>
<th>(\Delta A_{\text{stat}}) (ppm)</th>
<th>(\Delta A_{\text{sys,pt}}) (ppm)</th>
<th>(\Delta A_{\text{sys,glob}}) (ppm)</th>
<th>(f) (ppm)</th>
<th>(\Delta A_{\text{meas}}) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.122</td>
<td>-1.513</td>
<td>0.436</td>
<td>0.224</td>
<td>0.176</td>
<td>0.061</td>
<td>-1.380</td>
</tr>
<tr>
<td>2</td>
<td>0.128</td>
<td>-0.972</td>
<td>0.409</td>
<td>0.198</td>
<td>0.173</td>
<td>0.084</td>
<td>-1.070</td>
</tr>
<tr>
<td>3</td>
<td>0.136</td>
<td>-1.298</td>
<td>0.424</td>
<td>0.174</td>
<td>0.170</td>
<td>0.085</td>
<td>-1.340</td>
</tr>
<tr>
<td>4</td>
<td>0.144</td>
<td>-2.707</td>
<td>0.433</td>
<td>0.183</td>
<td>0.176</td>
<td>0.077</td>
<td>-2.670</td>
</tr>
<tr>
<td>5</td>
<td>0.153</td>
<td>-2.223</td>
<td>0.431</td>
<td>0.284</td>
<td>0.214</td>
<td>0.096</td>
<td>-2.460</td>
</tr>
<tr>
<td>6</td>
<td>0.164</td>
<td>-2.880</td>
<td>0.434</td>
<td>0.324</td>
<td>0.234</td>
<td>0.100</td>
<td>-3.130</td>
</tr>
<tr>
<td>7c</td>
<td>0.177</td>
<td>-3.949</td>
<td>0.426</td>
<td>0.251</td>
<td>0.205</td>
<td>0.110</td>
<td>-4.470</td>
</tr>
<tr>
<td>8</td>
<td>0.192</td>
<td>-3.850</td>
<td>0.485</td>
<td>0.218</td>
<td>0.192</td>
<td>0.110</td>
<td>-5.010</td>
</tr>
<tr>
<td>9</td>
<td>0.210</td>
<td>-4.683</td>
<td>0.475</td>
<td>0.258</td>
<td>0.212</td>
<td>0.116</td>
<td>-5.730</td>
</tr>
<tr>
<td>10</td>
<td>0.232</td>
<td>-5.267</td>
<td>0.505</td>
<td>0.301</td>
<td>0.232</td>
<td>0.136</td>
<td>-6.080</td>
</tr>
<tr>
<td>11</td>
<td>0.262</td>
<td>-5.260</td>
<td>0.520</td>
<td>0.108</td>
<td>0.166</td>
<td>0.154</td>
<td>-5.550</td>
</tr>
<tr>
<td>12</td>
<td>0.299</td>
<td>-7.715</td>
<td>0.602</td>
<td>0.531</td>
<td>0.349</td>
<td>0.174</td>
<td>-5.400</td>
</tr>
<tr>
<td>13</td>
<td>0.344</td>
<td>-8.400</td>
<td>0.676</td>
<td>0.850</td>
<td>0.521</td>
<td>0.182</td>
<td>-3.650</td>
</tr>
<tr>
<td>14a</td>
<td>0.410</td>
<td>-10.25</td>
<td>0.674</td>
<td>0.895</td>
<td>0.551</td>
<td>0.180</td>
<td>-1.700</td>
</tr>
<tr>
<td>15a</td>
<td>0.511</td>
<td>-16.81</td>
<td>0.889</td>
<td>1.478</td>
<td>1.498</td>
<td>0.190</td>
<td>-5.800</td>
</tr>
<tr>
<td>15b</td>
<td>0.631</td>
<td>-19.96</td>
<td>1.112</td>
<td>1.277</td>
<td>1.306</td>
<td>0.200</td>
<td>-9.740</td>
</tr>
<tr>
<td>15c</td>
<td>0.788</td>
<td>-30.83</td>
<td>1.857</td>
<td>2.556</td>
<td>2.589</td>
<td>0.400</td>
<td>-12.660</td>
</tr>
<tr>
<td>14b</td>
<td>0.997</td>
<td>-37.93</td>
<td>7.237</td>
<td>9.000</td>
<td>0.519</td>
<td>0.780</td>
<td>4.210</td>
</tr>
</tbody>
</table>

http://www.npl.uiuc.edu/exp/G0/Forward
Experimental Asymmetries

- “no vector strange” asymmetry, A_{NVS}, is $A(G_E^s, G_M^s = 0)$
- inside error bars: stat, outside: stat & pt-pt

http://www.npl.uiuc.edu/exp/G0/Forward
Strange Quark Contribution

- Strange quark contribution to asymmetry

\[G_E^s + \eta G_M^s = \frac{4\pi\alpha\sqrt{2}}{G_F Q^2} \frac{\tau G_E^p}{\epsilon G_E^p (1 + R_V^{(0)})} \left(A_{\text{phys}} - A_{\text{NVS}} \right) \]

\[\eta(Q^2, E_i) = \frac{\tau G_M^p}{\epsilon G_E^p} \]

http://www.npl.uiuc.edu/exp/G0/Forward
Strange Quark Contribution to Proton

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
Strange Quark Contribution to Proton

http://www.npl.uiuc.edu/exp/G0/Forward
Are the G0 Data Consistent with Zero?

• Test hypothesis $G_E^s + \eta G_M^s = 0$
• Simple χ^2 incorrect because of correlated uncertainties

• Instead, generate many copies of data set
 – each data value:
 • value from normal distribution with width = random uncertainty
 PLUS
 • value from normal distribution with width = correlated uncertainty
 – use new choices for each data point for random uncertainty
 – for each data set, use single random number for correlated uncertainty, scale according to our global uncertainty

• Result
 – 11% of resulting χ^2 values for test data sets are larger than that for our data
 • ~ independent of uncertainties used to calculate χ^2
Combination of G0 with SAMPLE, HAPPEX, PVA4
G0 With Other Experiments

• Show all uncertainties
 – short dash: statistical
 – long dash: statistical & overall systematic
 – solid: statistical & overall systematic & model

• Kelly form factors

• \(Q^2 = 0.1 \text{ GeV}^2 \)
 – extrapolate G0 using simple average of \(A_i/Q^2_i \) for first 3 \(Q^2 \) points
 • \(Q^2 = \{0.122, 0.128, 0.136\} \)
 • uncertainties are those of average
 – contours
 • simple prescription (PDG §32.1.2, Eqn. 32.11) using likelihood function
 • \(1\sigma, 2\sigma \) shown

• \(Q^2 = 0.23 \text{ (PVA4-I)}, 0.477 \text{ (HAPPEX-I) GeV}^2 \)
 – average \((A - A_{\text{NVS}})/Q^2 \) for three nearest G0 points
 • essentially averaging \(G_E^s + \eta G_M^s \)
 • \(Q^2 = \{0.210, 0.232, 0.262\} \)
 • \(Q^2 = \{0.410, 0.511, 0.631\} \)
World Data @ $Q^2 = 0.1$ GeV2

$G_E = -0.013 \pm 0.028$

$G_M = +0.62 \pm 0.31$

± 0.62 2σ

Contours

1. 1σ, 2σ
2. 68.3, 95.5% CL

Theories

1. Leinweber, et al.
 PRL 94 (05) 212001

2. Lyubovitskij, et al.
 PRC 66 (02) 055204

3. Lewis, et al.
 PRD 67 (03) 013003

 PRD 65 (01) 014016

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
$G_M = +0.55 \pm 0.28$

$G_E = -0.01 \pm 0.03$

This result
World Data @ $Q^2 = 0.23$ GeV2

- PVA4 measurement at $Q^2 = 0.23$ GeV2
 - consistent probable value for G_M^s
 - supports negative G_E^s

http://www.npl.uiuc.edu/exp/G0/Forward
World Data @ $Q^2 = 0.477$ GeV2

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
Speculation
Simple Fits to World Hydrogen Data

• Fit

\[G^s_E(Q^2) + \eta(Q^2, E_i)G^s_M(Q^2) = \]
\[\frac{4\pi\alpha\sqrt{2}}{G_FQ^2} \left(\frac{\epsilon G^p_E + \tau G^p_M}{\epsilon G^p_E(1 + R_V^{(0)})} \right) \left(A_{phys} - A_{NVS}(Q^2, E_i) \right) \]

with simple forms for \(G^s_E \), \(G^s_M \)

\[G^s_E(Q^2) = \frac{c_2Q^4}{1 + d_1Q^2 + d_2Q^4 + d_3Q^6} \]

à la Kelly

\[G^s_M(Q^2) = \frac{G^s_M(Q^2 = 0)}{\left(1 + Q^2/\Lambda^s_M^2\right)^2} \]

with

\[G^s_M(Q^2 = 0) = 0.81 \]

from \(Q^2 = 0.1 \text{ GeV}^2 \) plot, dipole ff

DHB, 17 June 2005
“Fit” to World Hydrogen Data

- $\chi^2 = 31/20$
“Fit” to World Hydrogen Data

\[c_2 = -0.51 \pm 0.25 \]
\[d_1 = -8.5 \pm 0.9 \]
\[d_2 = 24 \pm 6 \]
\[d_3 = 1 \]
\[\Lambda_M^2 = \Lambda^2 / 1.3 \]

Remember the factor of \(-1/3\)
G0 Backward Angle Measurements
G0 Backward Angle Measurements

- Match forward angle range with measurements at 3 momentum transfers

<table>
<thead>
<tr>
<th>Q^2</th>
<th>Beam Energy</th>
<th>Target</th>
<th>Rate</th>
<th>Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GeV2)</td>
<td>(GeV)</td>
<td>(MHz)</td>
<td>(ppm)</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.424</td>
<td>H$_2$</td>
<td>2.03</td>
<td>-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D$_2$</td>
<td>2.80</td>
<td>-25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.576</td>
<td>H$_2$</td>
<td>0.718</td>
<td>-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D$_2$</td>
<td>1.10</td>
<td>-43</td>
</tr>
<tr>
<td>0.8</td>
<td>0.799</td>
<td>H$_2$</td>
<td>0.190</td>
<td>-54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D$_2$</td>
<td>0.274</td>
<td>-72</td>
</tr>
</tbody>
</table>

- New detectors (scintillator array, Cherenkov): commissioning
- New electronics assembly (tested previously)
- Trigger change to run with standard beam (499 MHz)

Scheduled: Dec 05 – May 06

DHB, 17 June 2005
Prospective G0 Data @ $Q^2 = 0.8, 0.23 \text{ GeV}^2$

- Run in Dec ’05 at $Q^2 = 0.79 \text{ GeV}^2$ (H and D targets)
- Possible run at $Q^2 = 0.23 \text{ GeV}^2$ next (H alone?)
G0 Summary

• First measurement of parity-violating asymmetries over broad Q^2 range
• Excellent performance of accelerator, experimental equipment
• Conservative estimates of uncertainties
 – careful assessment of backgrounds

• Results consistent with previous measurements
• Emerging picture
 – $G_M^S > 0$ at low Q^2
 – $G_E^S < 0$ at medium Q^2 a possibility
 – $G_E^S + \eta G_M^S$ positive at higher Q^2
Acknowledgements

• We gratefully acknowledge the support of our funding agencies
 – DOE (US), NSF (US), IN2P3-CNRS (Fr) and NSERC (CA)

• We would also like to extend sincere thanks to the very strong technical support from many groups
 – Caltech, Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF

 – especially: JLab Accelerator
 JLab Hall C