Quark-hadron duality in neutron spin structure

Patricia Solvignon
Argonne National Laboratory

Jefferson Lab Seminar
November 14, 2008
Outline

- Brief introduction to inclusive scattering

- Review of Quark-Hadron duality:
 - Theoretical interpretations
 - Sample of related world data

- Hall A experiment E01-012
 - Experimental setup
 - Neutron (³He) “Spin duality” results

- More results from E01-012

- Summary
Inclusive electron scattering

\[e = (E, \vec{k}) \quad \quad e' = (E', \vec{k}') \]

\[q = (\nu, \vec{q}) \]

\[p = (M, \vec{0}) \quad \quad W \]

Unpolarized case

\[
\frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]
\]
Inclusive electron scattering

\(e = (E, \vec{k}) \) \(e' = (E', \vec{k}') \)

\[q = (\nu, \vec{q}) \]

\(p = (M, 0) \)

\(W \)

Unpolarized case

\[\frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right] \]

Polarized case

\[\frac{d^2 \sigma^{\uparrow \uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \downarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{vE Q^2} \left[(E + E' \cos \theta) g_1(x, Q^2) - 2 M g_2(x, Q^2) \right] \]

\[\frac{d^2 \sigma^{\uparrow \Rightarrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{vE Q^2} \sin \theta \left[g_1(x, Q^2) + \frac{2ME}{\nu} g_2(x, Q^2) \right] \]
Inclusive electron scattering

\[e = (E, \vec{k}) \quad \quad e' = (E', \vec{k}') \]

\[q = (\nu, \vec{q}) \]

\[p = (M, \vec{0}) \quad \quad W \]

- **Unpolarized case**

\[
\frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]
\]

- **Polarized case**

\[
\frac{d^2 \sigma^\uparrow \uparrow}{d\Omega dE'} - \frac{d^2 \sigma^\downarrow \downarrow}{d\Omega dE'} = \frac{4\alpha^2 E'}{\nu EQ^2} \left[(E + E' \cos \theta) g_1(x, Q^2) - 2M v g_2(x, Q^2) \right]
\]

\[
\frac{d^2 \sigma^\uparrow \Rightarrow}{d\Omega dE'} - \frac{d^2 \sigma^\downarrow \Rightarrow}{d\Omega dE'} = \frac{4\alpha^2 E'}{\nu EQ^2} \sin \theta \left[g_1(x, Q^2) + \frac{2ME}{\nu} g_2(x, Q^2) \right]
\]

4-momentum transfer squared

\[Q^2 = -q^2 = 4EE' \sin^2 \frac{\theta}{2} \]

Invariant mass squared

\[W^2 = M^2 + 2M
\]

Bjorken variable

\[x = \frac{Q^2}{2M \nu} \]
Deep inelastic scattering

\[e = (E, \vec{k}) \]

\[e' = (E', \vec{k}') \]

High \(Q^2 \) and \(W > 2 \text{GeV} \): fine resolution → we see partons

scaling → asymptotic freedom of the strong interaction

2004 Nobel Prize

D. J. Gross, H. D. Politzer and F. Wilczek
Scaling of F_2

$F_2 = \nu W_2$

H. W. Kendall, Rev. Mod. Phys. 63 (1991) 597

$x = 0.25$

1990 Nobel Prize

J. I. Friedman, H. W. Kendall and R. E. Taylor
Structure functions in the parton model

In the infinite-momentum frame, partons are point-like non-interacting particles:

$$\sigma_{\text{Nucleon}} = \sum_i \sigma_i$$

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^\uparrow(x) + q_i^\downarrow(x)]$$

$$g_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^\uparrow(x) - q_i^\downarrow(x)]$$
Structure functions in the parton model

In the infinite-momentum frame, partons are point-like non-interacting particles:

$$\sigma_{\text{Nucleon}} = \sum_i \sigma_i$$

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^\uparrow(x) + q_i^\downarrow(x)] = \frac{1}{2x} F_2(x)$$ \hspace{1cm} \text{Callan-Gross relation}$$

$$g_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^\uparrow(x) - q_i^\downarrow(x)]$$ \hspace{1cm} \text{No simple partonic description for } g_2$$
The resonance region

\[e = (E, \vec{k}) \]

\[e' = (E', \vec{k}') \]

Low \(Q^2 \) and \(W < 2 \text{ GeV} \): coarse resolution \(\rightarrow \) we don’t see individual partons.

- The nucleon goes through different excited states: the resonances
SCALING, DUALITY, AND THE BEHAVIOR OF RESONANCES
IN INELASTIC ELECTRON-PROTON SCATTERING*

E. D. Bloom and F. J. Gilman

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 June 1970)

We propose that a substantial part of the observed behavior of inelastic electron-proton scattering is due to a nondiffractive component of virtual photon-proton scattering. The behavior of resonance electroproduction is shown to be related in a striking way to that of deep inelastic electron-proton scattering. We derive relations between the elastic and inelastic form factors and the threshold behavior of the inelastic structure functions in the scaling limit.
Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2.

*Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

We propose that a substantial fraction of the energy loss in the inelastic electron-proton scattering is due to a nonuniformity of resonance positions. The behavior of resonances in the $p_{1/2}$ region is qualitatively different from that of deep inelastic electron-proton scattering. The behavior of the vector sum of elastic and inelastic form factors in the scaling limit is consistent with the predictions of a model.
Quark-hadron duality

High precision Hall C data allowed the confirmation of global duality and the observation of local duality for F_2.

What about spin-dependent structure functions?
Theoretical interpretations

Lattice QCD

Quark models

OPE

pQCD

\[Q^2 = 0 \]

\[Q^2 = \infty \]

pQCD (Carlson, Mukhopadhyay):

\[Q^2 \text{ dependence of transition form factors vs. } x \text{ dependence of parton distribution functions} \]

In resonance

\[
g_1 = \frac{M_N^2 g_+^2}{\pi M_R \Gamma_R Q^6} \approx \frac{M_N^2}{\pi M_R \Gamma_R} \left(\frac{g_+^2}{M_R^2 - M_N^2} \right)^3 (1 - x)^3
\]

In DIS

\[
\lim_{x \to 1} g_1(x) \propto (1 - x)^3
\]
Theoretical interpretations

\[\chiPT \quad Q^2 = 0 \quad \text{Lattice QCD} \quad \text{Quark models} \quad \text{OPE} \quad \text{pQCD} \quad Q^2 = \infty \]

Operator Product Expansion (Rujula, Georgi, Politzer):

\[\Rightarrow \text{Higher twist corrections are small or cancel.} \]

\[\Gamma_1(Q^2) = \mu_2(Q^2) + \frac{\mu_4(Q^2)}{Q^2} + \frac{\mu_6(Q^2)}{Q^4} + O\left(\frac{1}{Q^6}\right) \]

\[\text{Leading twist} \quad \text{Higher twists} \]
Theoretical interpretations

SU(6) symmetry breaking in the quark model (Close, Isgur and Melnitchouk):
- investigate several scenarios with suppression of spin-3/2, helicity-3/2 or symmetric wave function

\[|N\rangle = \cos \theta_w |\psi_\rho\rangle + \sin \theta_w |\psi_\lambda\rangle \]

<table>
<thead>
<tr>
<th>Model</th>
<th>SU(6)</th>
<th>no 410</th>
<th>no $^210, ^410$</th>
<th>no $S_{3/2}$</th>
<th>no $\sigma_{3/2}$</th>
<th>no ψ_{λ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^{np}</td>
<td>2/3</td>
<td>10/19</td>
<td>1/2</td>
<td>6/19</td>
<td>3/7</td>
<td>1/4</td>
</tr>
<tr>
<td>A^p_1</td>
<td>5/9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A^n_1</td>
<td>0</td>
<td>2/5</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Existing data on “spin duality”

Hall B

$g_1^p(DIS) > 0$
Existing data on “spin duality”

Hall B

$g_1^p(\text{DIS}) > 0$

but $g_1^p(\Delta) < 0$ even at Q^2 as high as 3.5 GeV2

Duality for g_1^p?
Existing data on “spin duality”

Hall B

Global duality

local duality
Existing data on “spin duality”

Hall C

Existing data on “spin duality”

Global duality

Hall C

Existing data on “spin duality”

Indication of duality for $g_1^{^3\text{He}}$ from Hall A (E94-010)
Neutron spin duality?

Onset of duality for g_1^n is expected “sooner”

$g_1^n(DIS) < 0$ and $g_1^n(\Delta)$ is negative up to the its FF fall off

In order to improve our understanding of duality, we need to explore duality in:

- polarized SF vs. unpolarized SF
- proton vs. neutron

A dedicated experiment to study spin duality on the neutron was necessary.
The experiment 01-012

- Ran in Jan.-Feb. 2003

- Inclusive experiment: $^3\text{He}(\bar{e},e')X$

 ➤ Polarized electron beam:

 $70 < P_{\text{beam}} < 85\%$

 ➤ Hall A in standard equipment

 ➤ Pol. ^3He target (para and perp):

 $<P_{\text{targ}} > = 37\%$

- Measured polarized cross section differences and form g_1 and g_2 for ^3He

⇒ Test of spin duality on the neutron (^3He)
The E01-012 Collaboration

Experimental setup

Both HRS in symmetric configuration at 25° and 32°
- Double the statistics
- Control the systematics

Particle ID = Cerenkov + EM calorimeter
- π/e reduced by 10^4
The polarized 3He target

3He as neutron target

\[P_n = 86\% \text{ and } P_p = -2.8\% \]
The polarized 3He target

Pressure ~ 14 atm under running conditions
High luminosity: 10^{36} s$^{-1}$cm$^{-2}$

$L_{tg} \sim 40$cm
The polarized ^3He target
The polarized 3He target

\[S = \kappa \omega \]
The polarized 3He target

$P_{^3\text{He}} = \kappa_{\text{epr}} \Delta \nu$

$\frac{\partial \rho}{\partial B} + \delta B_{^3\text{He}}$
Unpolarized cross sections

Agreement between both HRS better than 2%

Statistical errors only

- left arm
- right arm
Asymmetries

Statistical errors only
Asymmetries

Statistical errors only
From constant \((E, \theta)\) to constant \(Q^2\)
The structure function g_1 in ^3He

P. Solvignon et al., PRL 101, 182502 (2008)

Target mass corrections were applied on PDFs.
Spin duality on 3He and neutron

Use partial moments:

Integrate g_{res} and g_{dis} over the same x-range and at the same Q^2:

$$\tilde{\Gamma}^{\text{res}}_1 = \int_{x_{\text{min}}}^{x_{\text{max}}} g^{\text{res}}_1(x,Q^2) \, dx$$

$$\tilde{\Gamma}^{\text{dis}}_1 = \int_{x_{\text{min}}}^{x_{\text{max}}} g^{\text{dis}}_1(x,Q^2) \, dx$$

If $\tilde{\Gamma}^{\text{res}}_1 = \tilde{\Gamma}^{\text{dis}}_1$, duality is verified
Spin duality on ^{3}He and neutron

Use partial moments:
Integrate g_{res}^{1} and g_{dis}^{1} over the same x-range and at the same Q^{2}:

$$\tilde{\Gamma}_{1}^{\text{res}} = \int_{x_{\text{min}}}^{x_{\text{max}}} g_{1}^{\text{res}}(x,Q^{2}) \, dx$$

$$\tilde{\Gamma}_{1}^{\text{dis}} = \int_{x_{\text{min}}}^{x_{\text{max}}} g_{1}^{\text{dis}}(x,Q^{2}) \, dx$$

If $\tilde{\Gamma}_{1}^{\text{res}} = \tilde{\Gamma}_{1}^{\text{dis}}$ duality is verified

Neutron extraction using the effective polarization equation:

$$\tilde{\Gamma}_{1}^{^{3}\text{He}} = P_{n} \tilde{\Gamma}_{1}^{n} + 2P_{p} \tilde{\Gamma}_{1}^{p}$$

$P_{n}=86\%$

$P_{p}=-2.8\%$

Target mass corrections were applied on PDFs
Virtual photon-nucleon asymmetry

\[A_1(x, Q^2) = \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{F_1(x, Q^2)} \]

with \(\gamma^2 = \frac{4M^2x^2}{Q^2} \)

In the parton model:

\[A_1(x, Q^2) \approx \frac{g_1(x, Q^2)}{F_1(x, Q^2)} = \frac{\sum_i e_i^2 \Delta q_i(x, Q^2)}{\sum_i e_i^2 q_i(x, Q^2)} \]

If \(Q^2 \) dependence similar for \(g_1 \) and for \(F_1 \),

\(\Rightarrow \) weak \(Q^2 \) dependence of \(A_1 \)
A_1 for ^3He
A_1 for 3He

P. Solvignon et al., PRL 101, 182502 (2008)

Large negative value in the $\Delta(1232)$ region
A_1 for 3He

P. Solvignon et al., PRL 101, 182502 (2008)

Large negative value in the $\Delta(1232)$ region

Still large negative value in the $\Delta(1232)$ region
A_1 for 3He

P. Solvignon et al., PRL 101, 182502 (2008)

Large negative value in the $\Delta(1232)$ region

Still large negative value in the $\Delta(1232)$ region

A_1 becomes positive in the $\Delta(1232)$ region due to the drop in the ΔFF and the rising of the DIS background
\(A_1 \) for \(^3\text{He}\)

P. Solvignon et al., PRL 101, 182502 (2008)

Large negative value in the \(\Delta(1232) \) region

Still large negative value in the \(\Delta(1232) \) region

\(A_1 \) becomes positive in the \(\Delta(1232) \) region due to the drop in the \(\Delta \text{FF} \) and the rising of the DIS background

No strong \(Q^2 \)-dependence is now observed
A_1^n in the resonance region

\[
A_1^n = \frac{g_1^n - \gamma^2 g_2^n}{F_1^n}
\]

- Effective equation polarization cannot be used for a pt-to-pt neutron extraction in the resonance region

- Y. Kahn, W. Melnitchouk and S. Kulagin are including a Q^2-dependence in their convolution model (arXiv:0809.4308)

- Goal: test of quark-hadron duality on A_1^n and possible access to high x region
g_1^n and g_2^n in the resonance region

g_1^p from Hall B

g_2^p from MAID: its use is questionable for $Q^2 > 1\text{GeV}^2$

Convolution code: courtesy of Yonatan Kahn

neutron uncertainties will be improved by using fit of our data in the convolution
The g_2 structure function

Leading twist contribution determined entirely from g_1 through the Wandzura-Wilczek relation:

$$g_2 = g_2^{WW} + \bar{g}_2$$

$$g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_0^x dy \frac{g_1(y, Q^2)}{y}$$
The g_2 structure function

Leading twist contribution
determined entirely from g_1
through the Wandzura-Wilczek relation:

$$g_2 = g_2^{WW} + \bar{g}_2$$

$$g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_0^x dy \frac{g_1(y, Q^2)}{y}$$

higher twist contribution
The structure function g_2 in 3He

P. Solvignon et al., in preparation
Burkhard-Cottingham sum rule on the neutron

\[\Gamma_2(Q^2) = \int_0^1 dx \, g_2(x, Q^2) = 0 \]

Graph showing the data points for different experiments, including E94-010 (Res), E01-012 prel. (Res), SLAC E155x, and RSS (Res). The graph also includes a note indicating that the data is preliminary and from P. Solvignon et al., in preparation and RSS: K. Slifer et al., in preparation.
Higher moment d_2

\[d_2(Q^2) = \int_0^1 x^2 \left[2 \ g_1(x, Q^2) + 3 \ g_2(x, Q^2) \right] \ dx \]
Higher moment d_2

\[d_2(Q^2) = \int_0^1 x^2 \left[2 g_1(x, Q^2) + 3 g_2(x, Q^2) \right] dx \]

\[d_2^n \]

\[Q^2(GeV/c)^2 \]

Summary

E01-012 provides first precise data of Spin Structure Functions on neutron (3He) in the resonance region for $1.0 < Q^2 < 4.0 \text{GeV}^2$

✓ Overlap between E01-012 resonance data and DIS data:
 first dedicated test of Quark-Hadron Duality for neutron and 3He SSF
✓ No strong Q^2-dependence in resonance $A_1^{^3\text{He}}$ for $Q^2 > 2.0 \text{ GeV}^2$
 ➞ DIS-like behavior

Preliminary extraction of g_1^n and g_2^n in the resonance region ⇒ A_1^n will come soon

Preliminary results on the Burkhard-Cottingham sum rule and d_2^n at moderate Q^2

and more to come ...
At JLab 12GeV