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Background to the study—or why did we bother

to work like slaves for several months?

Shore and White’s, at first sight, surprising

claim about the axial anomaly.

Based on a classical paper of Jaffe and Manohar

who stressed the subtleties and warned that ’

a careful limiting procedure has to be intro-

duced’

Despite all the care, there are flaws. With the

J-M result one cannot have a sum rule for a

transversely polarized nucleon.

With the correct version one can
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OUTLINE OF TALK

1) A brief reminder of why the problem is non-

trivial in the traditional approach

2) The incorrect result

3)A simple derivation of the correct result
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What is the aim???

We consider a nucleon with 4-momentum pµ

and covariant spin vector S corresponding to

some specification of its spin state e.g. helic-

ity, transversity or spin along the Z-axis i.e. a

nucleon in state |p,S〉.

We require an expression for the expectation

value of the angular momentum in this state

i.e. for 〈p,S|J|p,S〉

i.e. we require an expression in terms of p

and S. This can then be used to relate the

expectation value of J for the nucleon to the

angular momentum carried by its constituents.
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The traditional approach:

In every field theory there is an expression for

the angular momentum density operator. The

angular momentum operator J is then an in-

tegral over all space of this density.

Typically the angular momentum density in-

volves the energy-momentum tensor density

Tµν(x) in the form e.g.

Jz = J3 =
∫

dV [xT02(x)− yT01(x)]
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Consider the piece xT02(x). It looks like a LO-

CAL operator, say O(x).

Then by translational invariance of the theory,

for any LOCAL operator F (x)

F (x + a) = eiP.aF (x)e−iP.a

Thus

F (x) = eiP.xF (0)e−iP.x

Hence, by the above:

O(x) = eiP.xO(0)e−iP.x (1)

= 0forALLx

Clearly absurd!
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Consider the expectation value of the first term

in the expression for the angular momentum

tensor:

〈p,S|
∫

d3xx1T02(x)|p,S〉 =
∫

d3xx1〈p,S|T02(x)|p,S〉
(5)

=
∫

d3xx1〈p,S|eiP.xT02(0)e−iP.x|p,S〉
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Now the nucleon is in an eigenstate of momen-

tum, so P acting on it just becomes p. The

numbers eip.xe−ip.x cancel out and we are left

with:

∫
dV x〈p,S|T02(0)|p,S〉

The matrix element is independent of x so we

are faced with
∫

dV x = ∞ ? or = 0 ? Totally

ambiguous!

The problem is an old one: In ordinary QM

plane wave states give infinities

The solution is an old one: Build a wave packet,

a superposition of physical plane wave states
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In QM we use

Ψp0(x) =
∫

d3p ψ(p0 − p) eip.x

where ψ(p0 − p) is peaked at p = p0

We then calculate some physical quantity and
at the end take the limit of a very sharp wave
packet

In field theory we do essentially the same and
build a physical wave packet state:

|Ψ(p0)〉 =
∫

d3p ψ(p0 − p) |p〉

then an expectation value in the state |Ψ(p0)〉
will involve non-diagonal matrix elements

〈p′|J |p〉
29



What about the spin??? J-M use

|Ψ(p0,S)〉 =
∫

d3p ψ(p0 − p) |p,S〉
i.e. with a fixed S on both sides of the equa-
tion.

They do this to simplify things so that the
expectation value only involves

〈p′,S|J |p,S〉

i.e. is at least diagonal in S—important for
them because they try to write down the most
general form for this matrix element

But this is incorrect. The wave packet is not
physical. Recall that for a physical nucleon

p.S = 0
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Thus if p is to vary freely in the wave packet

integration S cannot remain fixed. — Point 1

The second difficulty is the general form writ-

ten down for the matrix element. The Lorentz

structure assumed is not correct for non-diagonal

matrix elements.

To see this think of electromagnetic form factors:〈p′,S|jµ
em|p,S〉

We cannot say: this transforms like a 4-vector,

therefore we can express it terms of vectors

built from p, p′,S

We have to first factor out the Dirac spinors

ū(p′)[γµ F1 + iσµνqν
2m F2]u(p)

This is the second problem—-Point 2
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Now Jaffe and Manohar are generally very care-

ful, but nonetheless there are errors in their

derivation. They end up with the following ex-

pression for the matrix elements of the angular

momentum operator:

〈〈p, s|Ji|p, s〉〉JM =

1

4mp0

[
(3p2

0 −m2)si −
3p0 + m

p0 + m
(p.s)pi

]

where pµ = (p0, p) and si are the components

of the rest frame spin vector.

Recall that the parton picture is supposed to

be valid when the nucleon is viewed in a frame

where it is moving very fast. In other words

to derive a sum rule involving partons we must

take the limit
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if we consider longitudinal spin i.e p // s one

obtains:

〈〈p, s|Ji|p, s〉〉JM =
1

2
si

and there is no problem.

But for transverse polarization one gets:

〈〈p, s|Ji|p, s〉〉JM =
1

4mp0

[
(3p2

0 −m2)si

]

which →∞ as p0 →∞, so no sum rule is pos-

sible.

We will see in a moment that the result for

transverse spin is incorrect.
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The J-M reaction to our criticism—-very gra-

cious and positive!

Dear Larry, Elliot, Bernard,

Better late than never. Aneesh and I finally

found ourselves in the same place with the time

to review the issues you raised by email and in

your recent paper. We agree that there is an

error in our eq. (6.9). It came from treating

the quantity u(p’, s )u(p, s) with insufficient

care.

Thanks for taking care and finding this mis-

take. It’s good to get it cleared up.

I have to add that I found your paper rather

difficult to read. There is quite a bit of stuff

that gets in the way of the relatively simple

error...........
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A NEW APPROACH

• It is simple.

• It is short

• It works for any spin. Previous methods only

work for spin 1/2.

We know how rotations affect states. If |p, m〉
is a state with momentum p and spin projec-

tion m in the rest frame of the particle, and

if R̂z(β) is the operator for a rotation β about

OZ, then

R̂z(β)|p, m〉 = |Rz(β)p, m′〉Ds
m′m[Rz(β)]
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But rotations are generated by the angular mo-

mentum operators! i.e.

R̂i(β) = e−iβJi

so that

Ji = i
d

dβ
R̂i(β)

∣∣∣
β=0

From the above we know what the matrix ele-

ment of R̂i(β) looks like. So we simply differ-

entiate and put β = 0.

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

e.g. for spin 1/2 just σi.
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Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

e.g. for spin 1/2 just σz/2.

34



Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

= i
∂

∂β

[
〈p′, m′|Ri(β)p, n〉Ds

nm[Ri(β)]
]
β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

i.e. the matrix generator of rotations for that

spin e.g. for spin 1/2 just σi/2.

35



Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

= i
∂

∂β

[
〈p′, m′|Ri(β)p, n〉Ds

nm[Ri(β)]
]
β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin

s at β = 0 is just the spin matrix for that

spin. (more correctly: the matrix generator of

rotations for that spin) e.g. for spin 1/2 just

σi/2.

36



COMPARISON OF RESULTS

For the expectation values we find, for any spin

configuration (longitudinal, transverse etc) the

remarkably simple result (suppressing a delta-

function term):

〈〈p, s|Ji|p, s〉〉 =
1

2
si

Recall that the JM result for longitudinal spin

was precisely:

〈〈p, s|Ji|p, s〉〉JM =
1

2
si

in complete agreement with our result.
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But for transverse polarization JM had:

〈〈p, s|Ji|p, s〉〉JM =
1

4mp0

[
(3p2

0 −m2)si

]

which disagrees with our result and which, as

we said, would imply no possibility of a trans-

verse sum rule.

With our correct result there is no fundamental

distinction between the transverse and longitu-

dinal cases.
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SUM RULES

Expand nucleon state as superposition of n-

parton Fock states.

|p, m〉 '
∑
n

∑

{σ}

∫
d3k1 . . . d3kn

ψp,m(k1, σ1, ...kn, σn)

δ(3)(p− k1...− kn)|k1, σ1, ...kn, σn〉.
Consider a nucleon moving along OZ with mo-

mentum p

There are two independent cases:

(a) Longitudinal polarization i.e. s along OZ.

The sum rule for Jz yields the well known result

1/2 = 1/2∆Σ + ∆G + 〈Lq
z〉+ 〈LG

z 〉
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(b) Transverse polarization i.e. s ⊥ p. The

sum rule for Jx or Jy yields a a new sum rule

1/2 = 1/2
∑

q, q̄

∫
dx∆T q(x) +

∑

q, q̄, G

〈LsT 〉

Here LsT is the component of L along sT .

The structure functions ∆T qa(x) ≡ h
q
1(x) are

known as the quark transversity or transverse

spin distributions in the nucleon.

As mentioned no such parton model sum rule is

possible with the J-M formula because, as p →
∞, for i = x, y the matrix elements diverge.
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It is absolutely crucial to note that the sum

rule involves a SUM of Quark and Antiquark

densities.

Not realizing this has led to some misunder-

standings.

What some people call the TENSOR CHARGE

of the NUCLEON is the difference between

quark and antiquark contributions.

Thus the transverse spin sum rule, although

it involves the transverse spin or transversity

quark and antiquark densities, does NOT in-

volve the nucleon’s transversity. The Tensor

Charge operator is NOT related to the angu-

lar momentum.
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The structure functions ∆T q(x) ≡ h
q
1(x) are

most directly measured in doubly polarized Drell-
Yan reactions

p(sT ) + p(sT ) → l+ + l− + X

where the asymmetry is proportional to

∑

f

e2f [∆T qf(x1)∆T q̄f(x2) + (1 ↔ 2)].

They can also be determined from the asym-
metry in semi-inclusive hadronic interactions
like

p + p(sT ) → H + X

where H is a detected hadron, typically a pion.
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Also in SIDIS reactions with a transversely po-

larized target

` + p(sT ) → ` + H + X.

The problem is that in these semi-inclusive re-

actions ∆T q(x) always occurs multiplied by the

Collins fragmentation function, about which

we are at present gathering information.
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SUMMARY

• In order to derive angular momentum sum
rules you need an expression for the matrix el-

ements of the angular momentum operators J

in terms of the momentum p and spin s of the

particle.

• Such matrix elements are divergent and am-

biguous in the traditional approach and are

incorrect in some classic papers

• This can be handled using wave packets but

the calculations are long and unwieldy

• Using our knowledge of how states trans-

form under rotations leads quickly and rela-

tively painlessly to correct results

• The great success of the correct approach is
that it allows derivation of a sum rule also for

transversely polarized nucleons
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